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Abstract

The aim of this Note is to propose an example of nonuniqueness for the continuous static unilateral contact mo
Coulomb friction in linear elasticity.To cite this article: P. Hild, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Un exemple de non-unicité pour le modèle continu statique de contact unilatéral avec frottement de Coulomb. Le but
de cette Note est de proposer un exemple de non-unicité pour le modèle continu statique de contact unilatéral avec
de Coulomb en élasticité linéaire.Pour citer cet article : P. Hild, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

The Coulomb model [2] is the most common law of friction used in solid mechanics in order to describe s
or sticking bodies on a contact surface. This law is very often coupled with the unilateral contact model whic
into account the possible separation of the body from the surface. In the simple case of elastostatics, the v
formulation of the unilateral contact problem with Coulomb friction (see [3,4]) was followed some years la
an existence result in the case of an infinitely long strip with small friction (see [8]). These results were gen
with more classical geometries and the bounds ensuring existence were improved, particularly in refere
and [5]. Nevertheless, this (simple) model shows numerous mathematical difficulties so that there does n
to our knowledge neither uniqueness results nor nonuniqueness or nonexistence examples.

The aim of this Note is to propose a simple example of nonuniqueness for the continuous unilateral
model with Coulomb friction for a linear elastic body lying on a rigid foundation. This example admits at lea
solutions provided the friction coefficient is greater than a critical value. Moreover these two solutions (one
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2. Problem set-up

Let us consider the deformation of an elastic body occupying, in the initial unconstrained configu
a domainΩ in R

2. The boundary∂Ω of Ω consists ofΓD, ΓN andΓC where the measure ofΓD does not
vanish. The bodyΩ is submitted to given displacementsU on ΓD, it is subjected to surface traction forcesF on
ΓN and the body forces are denotedf. In the initial configuration, the partΓC is considered as the candidate cont
surface on a rigid foundation which means that the contact zone cannot enlarge during the deformation
The contact is assumed to be frictional and the stick, slip and separation zones onΓC are not known in advance
We denote byµ> 0 the given friction coefficient onΓC . The unit outward normal and tangent vectors on∂Ω are
n = (nx, ny) andt = (−ny,nx) respectively.

The unilateral contact problem with Coulomb’s friction law consists of finding the displacement fieldu : Ω →
R

2 satisfying (1)–(6):

divσ (u)+ f = 0 in Ω, (1)

σ (u)= Cε(u) in Ω, (2)

u = U onΓD, (3)

σ (u)n = F onΓN. (4)

The notationσ (u) :Ω → S2 represents the stress tensor field lying inS2, the space of second order symme
tensors onR2. The linearized strain tensor field isε(u)= (∇u + ∇T u)/2 andC is the fourth order symmetric an
elliptic tensor of linear elasticity.

We now choose the following notation for any displacement fieldu and for any density of surface forcesσ (u)n
defined on∂Ω :

u = unn + ut t and σ (u)n = σn(u)n + σt (u)t.

OnΓC , the three conditions representing unilateral contact are as follows:

un � 0, σn(u)� 0, σn(u)un = 0, (5)

and the Coulomb friction law onΓC is described by the following conditions:

ut = 0�⇒ ∣∣σt (u)∣∣ � µ

∣∣σn(u)∣∣,
ut �= 0�⇒ σt (u)= −µ

∣∣σn(u)∣∣ ut|ut | .
(6)

Remark 1. Let us mention that the true Coulomb friction law involves the tangential contact velocitie
not the tangential displacements. However, a problem analogous to the one discussed here is obtaine
discretization of the quasi-static frictional contact evolution problem. In this case (see [1])u, f andF stand for
u((i + 1)�t), f((i + 1)�t) andF((i + 1)�t) respectively andut has to be replaced byut ((i + 1)�t)− ut (i�t),
where�t denotes the time step. For simplicity, and without any loss of generality only the static case de
above will be considered in the following.

The variational formulation of problem (1)–(6) consists of findingu ∈ K satisfying (see [3,4]):

a(u,v − u)−
∫
Γ

µσn(u)
(|vt | − |ut |

)
dΓ � L(v − u), ∀v ∈ K, (7)
C
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a(u,v)=
∫
Ω

(
Cε(u)

) : ε(v)dΩ, L(v)=
∫
Ω

f · v dΩ +
∫
ΓN

F · v dΓ,

for anyu andv in the Sobolev space(H 1(Ω))2. In these definitions the notations· and: represent the canonic
inner products inR2 andS2 respectively.

In (7), the setK stands for the convex of admissible displacement fields:

K = {
v ∈ (

H 1(Ω)
)2; v = U onΓD, vn � 0 onΓC

}
.

As far as we know there only exist existence results in the case of small friction coefficients (see [8,7,5]) for p
(1)–(6) and there are neither uniqueness results (unless the loadsf, F andU are equal to zero) nor nonuniquene
or nonexistence examples available.

3. A nonuniqueness example

We consider the triangleΩ of vertexesA = (0,0), B = (1,0) andC = (3/4,1/4) and we defineΓD = [B,C],
ΓN = [A,C], ΓC = [A,B]. The bodyΩ lies on the rigid foundation, the half-space delimited by the straight
(A,B). We suppose that the bodyΩ is governed by Hooke’s law concerning homogeneous isotropic materia
that (2) becomes

σ (u)= Eν

(1− 2ν)(1+ ν)
tr
(
ε(u)

)
I + E

1+ ν
ε(u),

whereI represents the identity matrix, tr is the trace operator,E and ν denote Young’s modulus and Poiss
ratio, respectively. The chosen material characteristics areν = 1/5 andE = 1 (the choice ofE is only made for
the sake of simplicity and any choice of a postiveE would lead to the same kind of nonuniqueness example)
(x = (1,0), y = (0,1)) stand for the canonical basis ofR

2. We suppose that the volume forcesf = (fx, fy)= (0,0)
are absent and that the surface forces denotedF = (Fx,Fy) are such that

Fx = −35
√

10

48
α, Fy = 0,

whereα > 0. OnΓD, the presribed displacementsU = (Ux,Uy) are given by

Ux = 6α(x − 1), Uy = 3

4
α(x − 1),

whereα < 4/3 (to avoid some penetration ofΓD in the rigid foundation).
Set 0< α < 4/3 and introduce two linear displacement fieldsu = (ux,uy) andū = (ūx, ūy) in Ω :

ux = (7x + y − 7)α, uy =
(

−x − 7

4
y + 1

)
α, (8)

ūx = −6yα, ūy = −3

4
yα. (9)

The displacement fieldu moves pointsA andC to (−7α,α) and(3/4− 3α/2,1/4− 3α/16) respectively wherea
position of pointB remains unchanged. When consideringū the pointsA andB are stuck and the new position
pointC becomes(3/4− 3α/2,1/4− 3α/16).

In the next proposition we show that the two displacement fieldsu andū are solutions of the frictional conta
problem (1)–(6) if the friction coefficientµ is large enough.

Proposition 3.1. Let be given Ω , ΓD , ΓN , ΓC , E, ν, f, F, U, α as previously. For any µ� 3 there exist at least two
solutions (given by (8) and (9)) of the Coulomb frictional contact problem (1)–(6).
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Proof. Using the constitutive relation (2), one easily obtains:

σ (u)= α

( 175
24 0

0 0

)
, σ (ū)= α

(− 5
24 −5

2

−5
2 −5

6

)
.

As a result the equilibrium equationsdiv σ (u) = 0 anddivσ (ū) = 0 are satisfied inΩ . OnΓD, the two fieldsu
andū coincide with the prescribed displacement fieldU and the stress vectorsσ (u)n andσ (ū)n are equal toF on
ΓN (sincen = (−1/

√
10,3/

√
10)). It remains to verify the fulfillment of the frictional contact conditions for bo

fields. We begin withu. OnΓC , n = (0,−1), t = (1,0) and we get

σn(u)= 0, σt (u)= 0, un = α(x − 1), ut = 7α(x − 1).

Sinceα > 0 it follows thatun � 0. This togetherσn(u)= σt (u)= 0 implies thatu satisfies conditions (5), (6) fo
any positiveµ. In factu is a solution which separates from the rigid foundation except at pointB. We now conside
the displacement field̄u. The displacements, the normal and tangential stresses onΓC are:

σn(ū)= −5

6
α, σt (ū)= 5

2
α, ūn = 0, ūt = 0.

Obviouslyσn(ū) < 0 and|σt (ū)| � µ|σn(ū)| whenµ � 3. As a consequence, the displacement fieldū satisfies
conditions (5), (6) for anyµ� 3. Note that this solution is stuck on the rigid foundation. This concludes the p
of the proposition.

Remark 2. The valuesµ � 3 in the proposition correspond to quite large friction coefficients from an prac
point of view. Nevertheless, such a choice allows one to exhibit a simple non-uniqueness example. In f
possible to obtain examples of non-uniqueness withµ � 1+ ε for anyε > 0. This result is obtained together wi
the theoretical framework considering the general setting in which such nonunique isolated solutions occ
work is in preparation.

Remark 3. The are probably some other types of nonuniqueness cases for problem (1)–(6): a different a
from the one presented in this Note consists of searching sufficient conditions of nonuniqueness involving i
many solutions (which all remain in slipping contact) for critical (eigen)values of the friction coefficient (see

Remark 4. The existence of examples with nonunique solutions to (1)–(6) for arbitrary small friction coeffi
is an open question.
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