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Abstract

We simplify the proof of the theorem that close to any pseudoholomorphic disk there passes a pseudoholomorphic disk
of arbitrary close size with any pre-described sufficiently close direction. We apply these results to the Kobayashi and Hanh
pseudodistances. It is shown they coincide in dimensions higher than four. The result is new even in the comflexitase.
thisarticle: B. Kruglikov, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
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Résumé

Déformation de grands disques pseudo-holomorphes et application a la pseudonorme de Hanh. Nous simplifions la
preuve du théoréme montrant que pres de tout disque pseudo-holomorphe il passe un disque pseudo-holomorphe de tail
proche quelconque et avec une direction pré-fixée suffisamment proche. Nous appliquons ces résultats aux pseudodistances
Kobayashi et Hanh. Nous montrons qu’elles coincident en dimensions supérieures a quatre. Le résultat est nouveau, méme da
le cas complexeRour citer cet article: B. Kruglikov, C. R. Acad. Sci. Paris, Ser. | 338 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version francaise abr égée

Théoreme 0.1. Pour une variété quasi-complex&f, J), considérons un disque pseudo-holomorphe
fo:(Dgr,i) = (M, J), (f0)x(0)e=r0+#0.

Ici, e = 1 est le vecteur unité ebie C. Pour toute > 0, il existe un voisinag®. (vg) du vecteung € TM tel que a
chaquev € V. (vg) corresponde un disque pseudo-holomorphe

fi(Dreg,i)—> (M, J), fe(Qe=n.

La courbe approximant¢ peut étre choisie plongée/immergée si la coufpée peut.
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Ce théoreme a été prouvé dans [2] par la méthode de Newton et la machinerie de [7] . Nous le prouvons ici grace
au théoréme des fonctions implicites pour I'équation linéarisée le long du disque pseudo-holomorphe, en exploitan
'opérateur de Greeff,.. L'assertion généralise les Théorémes 1.7, 3.1.1(ii) de [5] et [10] respectivement.

Une application est reliée a la pseudo-norme de Kobayashi—-Roydepn(v) = inf{1/r | f:(D,,i) —

(M, J), f(0)e=v},veTM. Lethéoréme ci-dessus assure la semi-continuité supérieudrg dee qui implique

que la pseudo-distance de Kobayaghi(x, y) = inf{[y*Fuy | y:[0,1] = M, y(0) = x, y(1) = y} est bien

définie. De facon similaire, la pseudo-norme de H&ptiv) est définie avec la condition supplémentaire guest
injective. Cela engendre aussi la pseudo-distance de kganlia I'intégration suivant un chemin. Chaque pseudo-
distance coincide avec celle définie grace aux chaines de disques pseudo-holomorphes (resp. disques injectifs) [

Théoréme 0.2. Pour les variétés quasi-complex@gd?’, J), n > 2,0na: Sy = Fy.

Dans le cas de domain@g c C", la formule a été prouvée dans [8]. La généralisation est nouvelle, méme
dans le cas complexe général. La preuve est basée sur une idée de type Whitney pour déformer la courbe, avec |
nombre suffisant de parameétres pour résoudre les singularités.

1. Deformation of big pseudoholomorphic disks

We aim here to prove the following statement, which was proved by another (analogous to the approach of [7])
and more complicated method in [2].

Theorem 1.1. Let (M2, J) be an almost complex manifold and
fo:(Dg,i) > (M, J), (fo)«x(Q)e=v0€TM, wvo#0,

be a pseudoholomorphic disk. Here= 1 is the unit vector ad € C. For everye > 0 there exists a neighborhood
Vs (vo) of the vectorvg such that for eachv € V; there is ane-close in a fixedC*-norm, slightly smaller
pseudoholomorphic disk

fi(DRp—e,i) > (M, J), fi(O)e=nv.
The approximating curveg can be embedded/immersed if such is the cygve

This theorem was used in [2] for the proof of equivalence of two definitions of Kobayashi pseudodisfaimce
almost complex category. In the second definitignis associated via path integration to the Kobayashi—Royden
pseudonorm:

Fy)=inf{1/r| f:(Dy,i) > (M, )), fx(Qe=v}, veTM.

The above theorem assurBg to be upper semicontinous, implying that

dM(XsY):inf{/V*FM|V:[Os 1]—- M, y(0)=x, y(l)Zy}

is well-defined.

Moreover, since an embedded disk can always be perturbed to embedded we prove simultaneously the mail
properties of the Hanh pseudonosyy (v), which is defined by the same formula &% with an additional
requirement onf to be injective. This pseudometric generates a pseudodistance via path integratidny like
generated,, and this coincides (cf. [2]) with the distanag (x, y) =inf > ;" ; d(zx, wk), defined via injective
chainsfy: D1 — (M2, 1), k=1,....m, fi(z1) = p, fu(wn) =q and fi(wi) = fer1(zes1), Whered is the
Poincaré metric om;.
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2. New proof of Theorem 1.1

Our approach to the close pseudoholomorphic curves existence result is similar to that of [10], where the
linearization of the structurg was made at a point. We linearize the structure along the disk and use the reduction
of the almost complex problem to a complex one via the Green operator:

1 () =
.k n k+1 n _ RASE
T,:C*(D,,C") - C***(D,,C"), g(z)Hzni//C_Zdé‘/\dé‘.
D

It is continuous in the Sobolev and Hélder norms [11] and obeys the identifies: Id, Tr5|cla+l =1d.

Proof. We study at first the case, when the curve is embeddedl/Ust a neighborhood of the shrunk pseudo-
holomorphic curvefo(Dr—_.). We can assume [2] the disk is standg@sdDz_.) = Dr_. x {0}*~1 c C" and the
almost complex structuré : U — Endr(C"), J2 = —1, along it is the standard complex structute;) = Jo for

all z € Dg_. The equation forf to be pseudoholomorphic reads:

0f +as(Nof =0,  q@=[l+J@]  [fo—T@)].
which due to the above properties is equivalent to

0h=0, h=[ld+Tr—s0qs(f)od](f).
Fork e R\ Z, k > 1, consider the map

®:J x C*"Y(DR—s; U) —> C*H(Dp—; C"),
(J,8) > [Id+Tr—c 0 qs(fo+5) 0d](fo+s).

where 7 is a neighborhood of the given almost complex structiia C*-topology. We considet/ as the total
space of the “normal bundle”, with the sections being denoted by that every mag € C¥*1(Dg_,; U), thatis
Cl-close to( fo)Ips_., has a unique representatign= fo + s.
The map®,; = ®(J, -) is C*-smooth and satisfieg; (0) = fo, @', (0) = Id. It has the Taylor decomposition
(with | - || being theC**t1-norm):
®(s)= fo+s+o0(llsll).
Therefore Imd; contains a small neighborhood of the curfee

Let Z = (a,v) € TC" andhz(z) = a + vz be the holomorphic disk i/, z € Dg_,. It is close tofo whenever
Z is close toZg= (0, (1,0, ...,0)) € TC". Define

fz=fo+ @ hy).
Itis a J-holomorphic(R — ¢)-disk, which satisfiesf; — hz =0(|Z — Zo|).

Consider theC*-map¥ : C2" — C?*, Z — (f2(0), (f2)x(0)e). Since the above estimate impli&$(Zo) = Id,
themapl(Z)isa IocaICk-dif[gomorphism of a neighborhood &@b. In particular, for every = (a, v) sufficiently
close toZg there exists a pait = («, ¢) such thaw (Z) = Z.

Now the obtained mag = f5 is C1-close tofo and so is embedded. It is also smooth due to the usual elliptic
regularity [7,5,10]. If fp is immersed, the reasoning is the same for the neighborboobtained viafy by the
pull-back. R

In the general case for the map: (Dr—¢,i) — (M, J) we consider the graplfp: (Dg—e¢, i) = (Dr—e X
M, J =i x J), which is injective and apply the part of the statement already proved.

Remark 1. The proof implies persistence of big pseudoholomorphic disks (with an insignificant loss of size) under
perturbation not only of the initial vector, but also of the almost complex strudtinete the role of7 above), as

well as existence of a deformation of the initial curve to the perturbed one. This generalizes Theorems 1.7 of [5]
and 3.1.1(ii) of [10].
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3. Kobayashi—Royden vs. Hanh pseudometric

The properties of the Kobayashi—Royden pseudometric for almost complex manifolds was discussed in [2]. Let
us consider the non-integrable versi®n of the Hanh pseudometric. By a theorem of Overholt [8] it coincides
with the Kobayashi—Royden pseudometFig for domainsM c C" of dimensiom > 2. We generalize this to the
non-integrable case.

Theorem 3.1. Sy; = Fj for almost complex manifold3/2", J), n > 2.

Proof. SinceSy > Fy, it is enough to show that whatever smal- 0 is, any pseudoholomorphic disk of radius
R > 0 can be approximated by an injective pseudoholomorphic disk of r&lius with the same initial direction.
We give at first a new simple proof of Overholt's theorem from [8]. etz C* be a domain ang': Dp — M
be a holomorphic map. Denotgy (z) = f(z) — w2z2 — w3z°, z € Dr_g, W = (w2, w3) € C2*. For smallW the
map has still the image it Also note thatfy (0) = f(0) and £}, (0) = f'(0).
By the Sard theorem a geneiie € C" is outside the set

{M 21,22 € DR—s} U {fZ(zZ) Z€ DR—£}~

2_ 2
17422

For such a choice the mafy,, o is injective outside the anti-diagonfab = —z1}. Note that regularity of the origin

is preserved. So, switching amg being generic, we get the méf,, .., to be injective everywhere.

In other words, the Sard theorem implies that the sév ef (w2, w3) for which fy is not injective has measure
zero and so a generic pair of small vecters w3 € C" defines the required approximating digk (z).

In the general complex case we should shift along some holomorphic vector fields. This is achieved by the
graph-lift construction and Royden’s lemma [9] that an embedded holomorphic disk, shrunk a bit, has a Stein
neighborhood.

It is easier, however, to consider the general case of almost complex manifslds) and to deduce the
statement for integrablé as a corollary.

Denote byr : Dg—. x M — M the prOJectlon Asin Theorem 1.1, the graph ﬁ(ﬁt Dg_. — Dgr_, x M can be
deformed to the family; fo+<l> Y(gw), wheregy = o+ 1z — wzzz—wgz W = (W2, W3), w; € C"* and
(wo, w1) = (Po(wo, w3) @1(wa, w3)) are some&_*-smooth functions, close l@o =(0,(1,0,...,0) and such that
(fW (0), (fw)*(O)e) Zo e TC"1, We identify abovefo with gg, the first coordinate disk, and its neighborhood
with a ball B c C"*1, equipped with the structute=i x J.

Similarly to the first proof we get:fw = gy + pw, Wherepy = o(|W|). Now fw is an embedding if
7 fip (z1) # 7 £ (z2) for z1 # z2 and 37 £ (z) # 0. We consider only the first, more complicated, injectivity
condition. It's negation is equivalent gy (z1) — g (z2) = [Py 1IZ; + ¢, ¢ € D, or equivalently:

~ ~ - w (22 71
w2(z1+z2) + w3(z% + 2122+ Z%) =w1+ w C
2 — 21
TheAIast equation is never satisfied for a.e. siiak (W2, W3) in C2'*2, In fact, foriy = ¢1(W2, W3) the r.h.s. is
o(|W]). Thus the claim follows from the Sard theorem, if at least one of the coefficiefis afidws is not small.
Since

D x D=[Us(z1=22=0]U[D x D\ Us(z1 = —22)|U[D x D\ Us(z1 = (-3 +1Q)22)], ()
and the regularity at0, 0) is preserved under small perturbation we may achieve injectivity away from the anti-
diagonal by the quadratic perturbation and then in its neighborhood by a cubic one. This finishes theproof.

Forn =1, when almost complex structures are automatically integrable, the eq8iglity Fj; for domains
M c C is equivalent to contractibility = Dy or C). In the case ofC-dimensiornm = 2 the equality may fail to
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hold (however arguments of Theorem 2 show thgt coincides with the pseudonor$y, obtained via immersed
disks).

Example 1. Consider the mag, : D1 — C2, z — (z(az — 1)?, az%(az — 1)), || > 1. It has a unique self-
intersection pointp, (0) = ¢4 (1/a) = 0, which is transversalp,, (0) = (1,0), ¢4(1/a) = (0, 1), and so non-
removable. For a neighborhoadof the image Intg,) the pseudonormBy andSy are different.

For the producty* = U? x UZ the pseudonorms,, and Fy, were compared in [1]. It is however unclear
if we can majorizeSy; < ¢ - Fyy, with a constant depending avf, or more generally, if Kobayashi and Hanh
hyperbolicities s, resp.Sy; being a metric) are equivalent. Of course, the former implies the latter.

It was shown in [4] that contractible tame almost complex domains are hyperbolic. In other cases the
hyperbolicity may be lost.

Example 2. Consider the Reeb foliation d& with the standard’'? as a leaf. This foliation propagates via
parallel transports t®?* = R3 x R?"~3, n > 2, and there is an almost complgxon R?" making the foliation
pseudoholomorphic. Every domain containing the [B&fis neither tame nor hyperbolic. Far= 2 only a curve
of genus 1 can be realized pseudoholomorphically in an almost corfipféxJ) [6]. Forn > 2 the sphere? can
be realized pseudoholomorphically, yielding a non-tame and non-hyperbolic dom@&#tirn/) [4].

Remark 2. In [6] the analogy between geodesics and pseudoholomorphic disks was exploited (the Nijenhuis tensor
plays the role of the curvature [3]). It is however limited: by Theorem 3.1 there are no analogs for conjugate
points in complex time curves theory. In fact the pseudoholomorphic curves are more flexible: there passes a
pseudoholomorphic disk through every finite collection of points.
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