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Abstract

Let £2 be a connected and simply-connected open subsif’ afuch that the geodesic distancesiis equivalent to the
Euclidean distance. Let there be given a Riemannian metrjg of classC2 and of vanishing curvature if?, such that the
functionsg;; and their partial derivatives of ordet2 have continuous extensions @& Then there exists a connected open
subset2 of R” containing2 and a Riemannian metrig;;) of classC2 and of vanishing curvature if? that extends the
metric(gl-j). To citethisarticle: PG. Ciarlet, C. Mardare, C. R. Acad. Sci. Paris, Ser. | 338 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Prolongement d’une métrique riemannienne a courbure nulleSoit £2 un ouvert connexe et simplement connexeRée
tel que la distance géodésique dansoit equivalente a la distance euclidienne. $git) une metrique riemannienne de classe
C2 et de courbure nulle dang, telle que les fonctiong;; et leurs dérivées partielles d’ord2 aient des extensions continues
agn. AIorsﬁ existe un ouvert connex@ deR” contenant? et une meétrique riemannieniig;;) de class&? et de courbure
nulle dans2 qui prolonge la métriquég; ;). Pour citer cet article: P.G. Ciarlet, C. Mardare, C. R. Acad. Sci. Paris, Ser. | 338
(2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Preliminaries

An integern > 2 is given once and for all, Latin indices and exponents vary in th¢lsét ..., n}, and the
summation convention with respect to repeated indices and exponents is used. The rigitaiwts! designate
the space of all symmetric matrices, and the set of all positive-definite symmetric matrices, of.dfd@ris an
open subset dR”, we define the set

C%(2;8") :={C e C?(2;S"); C(x) €S forallx € 2}.

E-mail addresseanapgc@cityu.edu.hk (P.G. Ciarlet), mardare@ann.jussieu.fr (C. Mardare).

1631-073X/$ — see front matterl 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2003.12.017



392 P.G. Ciarlet, C. Mardare / C. R. Acad. Sci. Paris, Ser. | 338 (2004) 391-396

We define as follows spaces of functions, vector fields, or matrix fietdsslassCt up to the boundary of2”:

Definition 1.1. Let £2 be an open subset &”. For any integef > 1, the spac€‘(£2) consists of all functions
f € CY(£2) that, together with all their partial derivative$ f, 1 < |«| < ¢, can be extended by continuity 0.
Analogous definitions hold for the spac€&(2; R”) and C‘(£2;S"). Any continuous extension t® will be
identified by a bar.
We also define the set
C?(2;8") :={C e C?(£2;S"); C(x)eS” forallx € 2}.

Let £2 be a connected open subsef®¥f. Given two pointsc, y € £2, apath joiningx to y in £2 is any mapping
y €CL([0, 1]; R") that satisfiey (r) € £2 for all t € [0, 1] andy (0) = x andy (1) = y. Given a patly joining x to
y in £, its lengthis defined by

1
L) = / Iy ()] dr.
0

where| - | denotes the Euclidean normRf.
Let 2 be a connected open subsef®f. Thegeodesic distanceetween two points, y € £2 is defined by

do(x,y)=inf{L(y); y is a path joiningr to y in 2}.

The following definition is in effect a mild regularity assumption on the boundary of an open suli®&t of
Definition 1.2. An open subsef? of R" satisfies thegeodesic propertyf it is connected and, given any point
xo € 82 and anye > 0, there exists = §(xo, €) > 0 such that

do(x,y)<e forallx,ye £ N B(xop; ),
whereB(xp; 8) :={y e R"; |y — x| < 8}.
Let a Riemannian metrig;;) € C2(£2; S.) be given over an open subsetof R”. The Christoffel symbols of
the second kind associated with this metric are then defined by
1, _
Fk _g (81g]€ +0;8ei — 9¢8ij)s Where(gkl) = (gij) l,
and the mixed components of its associated Riemann curvature tensor are defined by
. ‘r l4
Rij =0T = oI + Ty Tjy = Ty .

If this tensor vanishes it and £2 is simply-connected classical result in differential geometry asserts that
(gij) is the metric tensor field of a manifol® (£2) that is isometrically immersed iR”. More specifically (see,
e.g., Ciarlet and Larsonneur [2, Theorem 2] for an elementary and self-contained firexaexists an immersion
O € C3(2; R that satisfies

2;0(x)-0;0(x)=g;j(x) forallxe s,

and, if in additions2 is connected, such an immersion is unique up to isometrigs$ in

In [3] (see [4] for a complete proof), we indicated hownanifold with boundaryi.e., a subset dR” of the form
O (£2), can be likewise recovered from a metric tensor field that, together with its partial derivatives okdder
can be continuously extended to ttiesures2 in such a way that the continuous extensions of the matciges
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remain positive-definite i2. More specifically, in [3,4] the above existence and uniqueness result is extended as
follows “up to the boundary of2”:

Theorem 1.3.Let 22 be a simply-connected open subsetiSf that satisfies the geodesic propertyee
Definition 1.2) Let there be given a matrix fielg;;) € C%(2;S") (in the sense of Definition 1.1pat satisfies

Uk_O in 2.

Then there exists a mappi® < C3($2; R") (again in the sense of Definition 1.that satisfiegthe notations); ®
andg;; represent the continuous extensions of the figldx and of the functiong;;, according to Definition 11):

30 (x)-9;0(x)=g;(x) forallxe,

and such a mapping is unique up to isometrieRfin

2. Another definition of the spaceC*(£2)

The final objective of this Notds to provide sufficient conditions guaranteeing that a Riemannian metric
(gij) € C2(2: S? ) with a Riemann curvature tensor vanlshlng in an open sufgsef R” can be extended to a
Riemannian metri¢g;;) € C2(2; S?) on a connected open s@tcontalnlngQ in such a way that the Riemann
curvature tensor associated with thls extension still vanish&s(see Theorem 3.1).

To this end, another characterization of the sp@o@?2) is needed (see Theorem 2.2). This is why we first
introduce another notion of “geodesic property”, stronger than that introduced in Definition 1.2.

Definition 2.1. An open subsef of R” satisfies thestrong geodesic properifit is connected and there exists a
constantCy, such that

do(x,y) <Cgqlx—y| forallx,ye 2,

whered, designates the geodesic distanc&irfcf. Section 1).

Remarks. (1) Any connected open subsetl®f with a Lipschitz-continuous boundary satisfies the strong geodesic
property; for a proof, see, e.g., Proposition 5.1 in Anicic, Le Dret and Raoult [1].

(2) The strong geodesic property clearly implies the geodesic property, but not conversely; consider, e.g., a
bounded open subset Bf whose boundary is a cardioid.

The following theorem, which hinges in particular on a profound result of Whitney [7] shows that, when an
open sef? satisfies the strong geodesic property, the sga¢®) introduced in Definition 1.1 admits a remarkably
simple characterization. This result will in turn play a key role in the announced extension theorem.

Theorem 2.2.Let §£2 be an open subset d&" that satisfies the strong geodesic property. Then for any integer
£ > 1, the spac&’(£2) of Definition1.1can be also defined as

CY2) ={fle eCl(2); feCYR")).

Sketch of proof. The proof, which is only briefly sketched here (see [4] for a complete proof), hinges on the

following steps. Note that the assumption tkasatisfies the strong geodesic property is not needed until part (iv).
(i) To begin with, we list somaotationsused throughout this proof. Given a multi-index (a1, a2, ..., o) €

N, we let
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glel
ol = o and %*:=——— — if |@| > 1,
el Xl: ! dx7rax52. .. 9x," el

0:=(0,0,...,00 and 3°f:=f,
0:=1 and a!:=(a1)(a2!)--- (o).
If x = (x;) andy = (y;) are two points irR”, we let
(y—0°:=1 and (y—x)%:=(y1—xD)* (y2 = x2)° - (yn — x)™".
Concurrently with the multi-index notatiaif* f for partial derivatives we also use the notations

af " f

Bigip..ip [ 1= G
e 1ip...i :
axil ’ ’ " axilaxiz s Bx,-m ’

3,’1f =

with the understanding that, whenever a summation involves such indides. . ., i,;, then they range in the set
{1,2,...,n}independently of each other.

(i) Let £2 be a connected open subsefi¥, let x andy be two points ins2, and lety = (y;) € C1([0, 1]; R")
be a path joining to y in £2. Then any functiory € C™(£2), m > 1, satisfies the following identity, which may be
viewed as &aylor formula along a path

1 1
fO)=fx)+ Eailf(x)(yil - xil) +-- mail...imflf(x)(yil - xil) ce ()’z’m,l - xim,l)
1 11 tm—2 , tm—1
+ / ( / - ( / ( / B £ (P )1, () drm>y,»’,,,_l<rm_1> drm_1> : --dtz) {0 dl.
0 0 0 0

(iii) The identity established in (i) in turn implies the following estimate, which may be viewedjaseralized
mean-valued theorem along a patlet £2 be a connected open subsef®sf, let x andy be two points ing2, let
¥ €CL([0, 1]; R") be a path joining to y in £2, and let a functiory € C"(£2), m > 1, be given. Then

1 1 12
‘f(y)— > —aﬁﬂx)(y—x)f"suy)m{ Y. = sup |3°‘f(z)—3°‘f(X)|2} :

brem P! aj=m ** 2€¥((0.1])

whereL(y) denotes the length of the pgth

(iv) The strong geodesic property then allows to get rid of the dependence on the patthe estimate
found in (iii), according to the following sharpened estimate: [ebe an open subset @”" that satisfies the
strong geodesic property and let a functifre C” (£2), m > 1, be given, the spaa@” (2) being defined as in
Definition 1.1. Then, given any point € £2 and any number > 0, there exist$ = §(xo, £) such that

_ 1 — _
‘f(y)— Z —,8ﬂf(X)(y—X)ﬂ <ely —x|" forallx,ye 2N B(xo: 8),
1Bl<m

wheref € CO(2) anddB f € CO(£2), 1< |B| < m, denote the continuous extensions of the functiprsCo(2)
andd? f € CO(0).

(v) Let there be given a functiopi in the space&’(£2), ¢ > 1, according to Definition 1.1. According to a deep
result of Whitney [7],f is also the restriction ta2 of a function in the spacé‘(R") if, for each multi-indes
satisfying0 < |e| < ¢, there exist functiongy e C°(£2) with the following propertyFor any pointsx, y € £ and
any multi-indexx satisfying0 < |a| < ¢, let

1

g1 a0 x)P.

Ra(y:x):=fa() = Y

IBI<E—le|
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Then, given any pointy € 22 and any numbes > 0, there exists$ = §(xo, £) such that
|Ra(y; x)| <ely — x|l forallx, y € 2 N B(xp; §) and 0< |a| < £.
To verify that this is indeed the case, lete 2 ande > 0 be given. Then the estimate of part (iv) applied to
each functiord® f, 0 < |a| < ¢, shows that there exiség = 84 (xo, €) such that

Jaf — Z _3ﬂ(aaf)(x)(y_x)ﬂ <ely —x|71® forall x, y € 2 N B(xo; 8a).
[Bl<e— |0!|

Since 383 f)(x) = aP*® f(x) for all x € 22, it also follows thatd (8« f)(x) = 3+« f(x) for all x € 2.
Therefore Whitney’s theorem can be applied, wigh:= 0 f ands :=min{§,; 0< |¢| < ¢}. O

3. Extension of a Riemannian metric with a vanishing curvature
We are now in a position to prove the announced extension result. The notations are the same as in Theorem 1.

Theorem 3.1.Let §2 be a simply-connected open subseRbfthat satisfies the strong geodesic property and let
there be given a matrix fieltg;;) € C2(82; S7) that satisfies

P
Rix=0 iIng.

Then there exist a connected open sulssetf R” containings2 and a matrix fieldg;;) Cz(ﬁ; S%) such that
gij(x)=gij(x) forallxef and ﬁfjjk =0 ing,

where the function§fjk € C%(£2) denote the mixed components of the Riemann curvature tensor associated with
the flem(gl])

Proof. Sinces2 a fortiori satisfies the geodesic property a2ds simply-connected, there exists by Theorem 1.3
a mapping® e C3(£2; R") that satisfies

30O (x)-3;0(x)=g;(x) forallxe 2.
Sinces2 satisfies the strong geodesic property, there in turn exists by Theorem 2.2 a mép@iﬁiﬂR{”; R™) that
satisfies

O(x)=0(x) forallxe.

Let then

2ij(x):=00(x)-0;0(x) forallxeR",
and define the set

U:= {x e R"; (g,-,-(x)) IS S';}
which is open irR” and contai_n§ (sinceg;; (x)~: gij(x)forallx e Q). Finally, define the seP as the connected

component ot/ that containg2; hence the se® is open and connected.
Furthermore, the mixed componem$ i of the Riemann curvature tensor associated with the figld are

well defined in the se@ since the matricegg;; (x)) are by construction invertible for all € QcU.

Becauseg;;(x) = 9; @(x) 0j @(x) for all x € £2 and the restr|ct|019|9 € (33(!2 R™) is an immersion, the
relatlonsR” e =0in 2 are 5|mply the well-known necessary conditions that a Riemannian metric induced by an
immersion sat|sf|es ]

A similar extension theorem for surfacesl&¥ can be likewise established; see [5,6].
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