

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 338 (2004) 391-396

Differential Geometry

Extension of a Riemannian metric with vanishing curvature

Philippe G. Ciarlet^a, Cristinel Mardare^b

^a Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong ^b Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4, place Jussieu, 75005 Paris, France

Received 1 December 2003; accepted 15 December 2003

Presented by Robert Dautray

Abstract

Let Ω be a connected and simply-connected open subset of \mathbb{R}^n such that the geodesic distance in Ω is equivalent to the Euclidean distance. Let there be given a Riemannian metric (g_{ij}) of class \mathcal{C}^2 and of vanishing curvature in Ω , such that the functions g_{ij} and their partial derivatives of order ≤ 2 have continuous extensions to $\overline{\Omega}$. Then there exists a connected open subset $\widetilde{\Omega}$ of \mathbb{R}^n containing $\overline{\Omega}$ and a Riemannian metric (\tilde{g}_{ij}) of class \mathcal{C}^2 and of vanishing curvature in $\widetilde{\Omega}$ that extends the metric (g_{ij}) . To cite this article: P.G. Ciarlet, C. Mardare, C. R. Acad. Sci. Paris, Ser. I 338 (2004). © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Prolongement d'une métrique riemannienne à courbure nulle. Soit Ω un ouvert connexe et simplement connexe de \mathbb{R}^n tel que la distance géodésique dans Ω soit équivalente à la distance euclidienne. Soit (g_{ij}) une métrique riemannienne de classe C^2 et de courbure nulle dans Ω , telle que les fonctions g_{ij} et leurs dérivées partielles d'ordre ≤ 2 aient des extensions continues à $\overline{\Omega}$. Alors il existe un ouvert connexe $\widetilde{\Omega}$ de \mathbb{R}^n contenant $\overline{\Omega}$ et une métrique riemannienne (\tilde{g}_{ij}) de classe C^2 et de courbure nulle dans $\widetilde{\Omega}$ qui prolonge la métrique (g_{ij}) . *Pour citer cet article : P.G. Ciarlet, C. Mardare, C. R. Acad. Sci. Paris, Ser. I 338* (2004).

© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Preliminaries

An integer $n \ge 2$ is given once and for all, Latin indices and exponents vary in the set $\{1, 2, ..., n\}$, and the summation convention with respect to repeated indices and exponents is used. The notations \mathbb{S}^n and $\mathbb{S}^n_>$ designate the space of all symmetric matrices, and the set of all positive-definite symmetric matrices, of order *n*. If Ω is an open subset of \mathbb{R}^n , we define the set

 $\mathcal{C}^{2}(\Omega; \mathbb{S}^{n}_{>}) := \{ \boldsymbol{C} \in \mathcal{C}^{2}(\Omega; \mathbb{S}^{n}); \ \boldsymbol{C}(x) \in \mathbb{S}^{n}_{>} \text{ for all } x \in \Omega \}.$

E-mail addresses: mapgc@cityu.edu.hk (P.G. Ciarlet), mardare@ann.jussieu.fr (C. Mardare).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2003.12.017

We define as follows spaces of functions, vector fields, or matrix fields, "of class C^{ℓ} up to the boundary of Ω ":

Definition 1.1. Let Ω be an open subset of \mathbb{R}^n . For any integer $\ell \ge 1$, the space $\mathcal{C}^{\ell}(\overline{\Omega})$ consists of all functions $f \in \mathcal{C}^{\ell}(\Omega)$ that, together with all their partial derivatives $\partial^{\alpha} f$, $1 \le |\alpha| \le \ell$, can be extended by continuity to $\overline{\Omega}$. Analogous definitions hold for the spaces $\mathcal{C}^{\ell}(\overline{\Omega}; \mathbb{R}^n)$ and $\mathcal{C}^{\ell}(\overline{\Omega}; \mathbb{S}^n)$. Any continuous extension to $\overline{\Omega}$ will be identified by a bar.

We also define the set

$$\mathcal{C}^{2}(\overline{\Omega}; \mathbb{S}^{n}_{>}) := \left\{ \boldsymbol{C} \in \mathcal{C}^{2}(\overline{\Omega}; \mathbb{S}^{n}); \ \overline{\boldsymbol{C}}(x) \in \mathbb{S}^{n}_{>} \text{ for all } x \in \overline{\Omega} \right\}.$$

Let Ω be a connected open subset of \mathbb{R}^n . Given two points $x, y \in \Omega$, a *path joining* x *to* y *in* Ω is any mapping $\gamma \in C^1([0, 1]; \mathbb{R}^n)$ that satisfies $\gamma(t) \in \Omega$ for all $t \in [0, 1]$ and $\gamma(0) = x$ and $\gamma(1) = y$. Given a path γ joining x to y in Ω , its *length* is defined by

$$L(\boldsymbol{\gamma}) := \int_{0}^{1} \left| \boldsymbol{\gamma}'(t) \right| \mathrm{d}t.$$

where $|\cdot|$ denotes the Euclidean norm in \mathbb{R}^n .

Let Ω be a connected open subset of \mathbb{R}^n . The *geodesic distance* between two points $x, y \in \Omega$ is defined by

 $d_{\Omega}(x, y) = \inf \{ L(\boldsymbol{\gamma}); \ \boldsymbol{\gamma} \text{ is a path joining } x \text{ to } y \text{ in } \Omega \}.$

The following definition is in effect a mild regularity assumption on the boundary of an open subset of \mathbb{R}^n :

Definition 1.2. An open subset Ω of \mathbb{R}^n satisfies the *geodesic property* if it is connected and, given any point $x_0 \in \partial \Omega$ and any $\varepsilon > 0$, there exists $\delta = \delta(x_0, \varepsilon) > 0$ such that

 $d_{\Omega}(x, y) < \varepsilon$ for all $x, y \in \Omega \cap B(x_0; \delta)$,

where $B(x_0; \delta) := \{ y \in \mathbb{R}^n; |y - x| < \delta \}.$

Let a Riemannian metric $(g_{ij}) \in C^2(\Omega; \mathbb{S}^n_{>})$ be given over an open subset Ω of \mathbb{R}^n . The Christoffel symbols of the second kind associated with this metric are then defined by

$$\Gamma_{ij}^{k} := \frac{1}{2} g^{k\ell} (\partial_{i} g_{j\ell} + \partial_{j} g_{\ell i} - \partial_{\ell} g_{ij}), \quad \text{where } \left(g^{k\ell} \right) := (g_{ij})^{-1},$$

and the mixed components of its associated Riemann curvature tensor are defined by

$$R^p_{\cdot ijk} := \partial_j \Gamma^p_{ik} - \partial_k \Gamma^p_{ij} + \Gamma^\ell_{ik} \Gamma^p_{j\ell} - \Gamma^\ell_{ij} \Gamma^p_{k\ell}.$$

If this tensor vanishes in Ω and Ω is simply-connected, a classical result in differential geometry asserts that (g_{ij}) is the metric tensor field of a manifold $\Theta(\Omega)$ that is isometrically immersed in \mathbb{R}^n . More specifically (see, e.g., Ciarlet and Larsonneur [2, Theorem 2] for an elementary and self-contained proof), there exists an immersion $\Theta \in C^3(\Omega; \mathbb{R}^n)$ that satisfies

 $\partial_i \boldsymbol{\Theta}(x) \cdot \partial_j \boldsymbol{\Theta}(x) = g_{ij}(x) \text{ for all } x \in \Omega,$

and, if in addition Ω is connected, such an immersion is unique up to isometries in \mathbb{R}^n .

In [3] (see [4] for a complete proof), we indicated how a *manifold with boundary*, i.e., a subset of \mathbb{R}^n of the form $\Theta(\overline{\Omega})$, can be likewise recovered from a metric tensor field that, together with its partial derivatives of order ≤ 2 , can be continuously extended to the *closure* $\overline{\Omega}$ in such a way that the continuous extensions of the matrices (g_{ii})

392

remain positive-definite in $\overline{\Omega}$. More specifically, in [3,4] the above existence and uniqueness result is extended as follows "up to the boundary of Ω ":

Theorem 1.3. Let Ω be a simply-connected open subset of \mathbb{R}^n that satisfies the geodesic property (see Definition 1.2). Let there be given a matrix field $(g_{ij}) \in C^2(\overline{\Omega}; \mathbb{S}^n_{>})$ (in the sense of Definition 1.1) that satisfies

$$R^p_{iik} = 0$$
 in Ω .

Then there exists a mapping $\boldsymbol{\Theta} \in C^3(\overline{\Omega}; \mathbb{R}^n)$ (again in the sense of Definition 1.1) that satisfies (the notations $\overline{\partial_i \boldsymbol{\Theta}}$ and $\overline{g_{ij}}$ represent the continuous extensions of the fields $\partial_i \boldsymbol{\Theta}$ and of the functions g_{ij} , according to Definition 1.1):

$$\overline{\partial_i \boldsymbol{\Theta}}(x) \cdot \overline{\partial_j \boldsymbol{\Theta}}(x) = \overline{g_{ij}}(x) \quad \text{for all } x \in \overline{\Omega},$$

and such a mapping is unique up to isometries in \mathbb{R}^n .

2. Another definition of the space $\mathcal{C}^{\ell}(\overline{\Omega})$

The final *objective of this Note* is to provide sufficient conditions guaranteeing that a Riemannian metric $(g_{ij}) \in C^2(\Omega; \mathbb{S}^n_{>})$ with a Riemann curvature tensor vanishing in an open subset Ω of \mathbb{R}^n can be extended to a Riemannian metric $(\tilde{g}_{ij}) \in C^2(\widetilde{\Omega}; \mathbb{S}^n_{>})$ on a connected open set $\widetilde{\Omega}$ containing $\overline{\Omega}$, in such a way that the Riemann curvature tensor associated with this extension still vanishes in $\widetilde{\Omega}$ (see Theorem 3.1).

To this end, another characterization of the space $C^{\ell}(\overline{\Omega})$ is needed (see Theorem 2.2). This is why we first introduce another notion of "geodesic property", stronger than that introduced in Definition 1.2.

Definition 2.1. An open subset Ω of \mathbb{R}^n satisfies the *strong geodesic property* if it is connected and there exists a constant C_{Ω} such that

$$d_{\Omega}(x, y) \leq C_{\Omega}|x - y|$$
 for all $x, y \in \Omega$,

where d_{Ω} designates the geodesic distance in Ω (cf. Section 1).

Remarks. (1) Any connected open subset of \mathbb{R}^n with a Lipschitz-continuous boundary satisfies the strong geodesic property; for a proof, see, e.g., Proposition 5.1 in Anicic, Le Dret and Raoult [1].

(2) The strong geodesic property clearly implies the geodesic property, but not conversely; consider, e.g., a bounded open subset of \mathbb{R}^2 whose boundary is a cardioid.

The following theorem, which hinges in particular on a profound result of Whitney [7] shows that, when an open set Ω satisfies the strong geodesic property, the space $C^{\ell}(\overline{\Omega})$ introduced in Definition 1.1 admits a remarkably simple characterization. This result will in turn play a key role in the announced extension theorem.

Theorem 2.2. Let Ω be an open subset of \mathbb{R}^n that satisfies the strong geodesic property. Then for any integer $\ell \ge 1$, the space $C^{\ell}(\overline{\Omega})$ of Definition 1.1 can be also defined as

$$\mathcal{C}^{\ell}(\overline{\Omega}) = \left\{ f|_{\Omega} \in \mathcal{C}^{\ell}(\Omega); \ f \in \mathcal{C}^{\ell}(\mathbb{R}^n) \right\}.$$

Sketch of proof. The proof, which is only briefly sketched here (see [4] for a complete proof), hinges on the following steps. Note that the assumption that Ω satisfies the strong geodesic property is not needed until part (iv).

(i) To begin with, we list some *notations* used throughout this proof. Given a multi-index $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{N}^n$, we let

$$|\boldsymbol{\alpha}| := \sum_{i} \alpha_{i} \quad \text{and} \quad \partial^{\boldsymbol{\alpha}} := \frac{\partial^{|\boldsymbol{\alpha}|}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \dots \partial x_{n}^{\alpha_{n}}} \quad \text{if } |\boldsymbol{\alpha}| \ge 1,$$
$$\boldsymbol{0} := (0, 0, \dots, 0) \quad \text{and} \quad \partial^{\boldsymbol{0}} f := f,$$

 $\mathbf{0}! := 1 \quad \text{and} \quad \boldsymbol{\alpha}! := (\alpha_1!)(\alpha_2!) \cdots (\alpha_n!).$

If $x = (x_i)$ and $y = (y_i)$ are two points in \mathbb{R}^n , we let

 $(y-x)^{\mathbf{0}} := 1$ and $(y-x)^{\alpha} := (y_1 - x_1)^{\alpha_1} (y_2 - x_2)^{\alpha_2} \cdots (y_n - x_n)^{\alpha_n}$.

Concurrently with the multi-index notation $\partial^{\alpha} f$ for partial derivatives we also use the notations

$$\partial_{i_1} f := \frac{\partial f}{\partial x_{i_1}}, \dots, \partial_{i_1 i_2 \dots i_m} f := \frac{\partial^m f}{\partial x_{i_1} \partial x_{i_2} \cdots \partial x_{i_m}},$$

with the understanding that, whenever a summation involves such indices $i_1, i_2, ..., i_m$, then they range in the set $\{1, 2, ..., n\}$ independently of each other.

(ii) Let Ω be a connected open subset of \mathbb{R}^n , let *x* and *y* be two points in Ω , and let $\boldsymbol{\gamma} = (\gamma_i) \in \mathcal{C}^1([0, 1]; \mathbb{R}^n)$ be a path joining *x* to *y* in Ω . Then any function $f \in \mathcal{C}^m(\Omega), m \ge 1$, satisfies the following identity, which may be viewed as a *Taylor formula along a path*:

$$f(y) = f(x) + \frac{1}{1!} \partial_{i_1} f(x)(y_{i_1} - x_{i_1}) + \dots + \frac{1}{(m-1)!} \partial_{i_1 \dots i_{m-1}} f(x)(y_{i_1} - x_{i_1}) \dots (y_{i_{m-1}} - x_{i_{m-1}}) + \int_0^1 \left(\int_0^{t_1} \cdots \left(\int_0^{t_{m-2}} \left(\int_0^{t_{m-1}} \partial_{i_1 \dots i_m} f(\boldsymbol{\gamma}(t_m)) \gamma'_{i_m}(t_m) dt_m \right) \gamma'_{i_{m-1}}(t_{m-1}) dt_{m-1} \right) \dots dt_2 \right) \gamma'_{i_1}(t_1) dt_1$$

(iii) The identity established in (ii) in turn implies the following estimate, which may be viewed as a *generalized mean-valued theorem along a path*: Let Ω be a connected open subset of \mathbb{R}^n , let x and y be two points in Ω , let $\gamma \in C^1([0, 1]; \mathbb{R}^n)$ be a path joining x to y in Ω , and let a function $f \in C^m(\Omega)$, $m \ge 1$, be given. Then

$$\left|f(y) - \sum_{|\boldsymbol{\beta}| \leq m} \frac{1}{\boldsymbol{\beta}!} \partial^{\boldsymbol{\beta}} f(x)(y-x)^{\boldsymbol{\beta}}\right| \leq L(\boldsymbol{\gamma})^{m} \left\{ \sum_{|\boldsymbol{\alpha}|=m} \frac{1}{\boldsymbol{\alpha}!} \sup_{z \in \boldsymbol{\gamma}([0,1])} \left|\partial^{\boldsymbol{\alpha}} f(z) - \partial^{\boldsymbol{\alpha}} f(x)\right|^{2} \right\}^{1/2},$$

where $L(\boldsymbol{\gamma})$ denotes the length of the path $\boldsymbol{\gamma}$.

(iv) The strong geodesic property then allows to get rid of the dependence on the path γ in the estimate found in (iii), according to the following sharpened estimate: Let Ω be an open subset of \mathbb{R}^n that satisfies the strong geodesic property and let a function $f \in C^m(\overline{\Omega})$, $m \ge 1$, be given, the space $C^m(\overline{\Omega})$ being defined as in Definition 1.1. Then, given any point $x_0 \in \overline{\Omega}$ and any number $\varepsilon > 0$, there exists $\delta = \delta(x_0, \varepsilon)$ such that

$$\left|\overline{f}(y) - \sum_{|\boldsymbol{\beta}| \leq m} \frac{1}{\boldsymbol{\beta}!} \overline{\partial^{\boldsymbol{\beta}} f}(x)(y-x)^{\boldsymbol{\beta}}\right| \leq \varepsilon |y-x|^{m} \quad \text{for all } x, y \in \overline{\Omega} \cap B(x_{0}; \delta).$$

where $\overline{f} \in \mathcal{C}^0(\overline{\Omega})$ and $\overline{\partial^{\beta} f} \in \mathcal{C}^0(\overline{\Omega})$, $1 \leq |\beta| \leq m$, denote the continuous extensions of the functions $f \in \mathcal{C}^0(\Omega)$ and $\partial^{\beta} f \in \mathcal{C}^0(\Omega)$.

(v) Let there be given a function f in the space $C^{\ell}(\overline{\Omega})$, $\ell \ge 1$, according to Definition 1.1. According to a deep result of Whitney [7], f is also the restriction to Ω of a function in the space $C^{\ell}(\mathbb{R}^n)$ if, for each multi-index α satisfying $0 \le |\alpha| \le \ell$, there exist functions $f_{\alpha} \in C^0(\overline{\Omega})$ with the following property: For any points $x, y \in \overline{\Omega}$ and any multi-index α satisfying $0 \le |\alpha| \le \ell$, let

$$R_{\boldsymbol{\alpha}}(\boldsymbol{y};\boldsymbol{x}) := f_{\boldsymbol{\alpha}}(\boldsymbol{y}) - \sum_{|\boldsymbol{\beta}| \leq \ell - |\boldsymbol{\alpha}|} \frac{1}{\boldsymbol{\beta}!} f_{\boldsymbol{\alpha}+\boldsymbol{\beta}}(\boldsymbol{x})(\boldsymbol{y}-\boldsymbol{x})^{\boldsymbol{\beta}}.$$

394

Then, given any point $x_0 \in \overline{\Omega}$ and any number $\varepsilon > 0$, there exists $\delta = \delta(x_0, \varepsilon)$ such that

$$|R_{\alpha}(y;x)| \leq \varepsilon |y-x|^{\ell-|\alpha|}$$
 for all $x, y \in \overline{\Omega} \cap B(x_0; \delta)$ and $0 \leq |\alpha| \leq \ell$.

To verify that this is indeed the case, let $x_0 \in \overline{\Omega}$ and $\varepsilon > 0$ be given. Then the estimate of part (iv) applied to each function $\overline{\partial^{\alpha} f}$, $0 \leq |\alpha| \leq \ell$, shows that there exists $\delta_{\alpha} = \delta_{\alpha}(x_0, \varepsilon)$ such that

$$\left| \overline{\partial^{\alpha} f} - \sum_{|\boldsymbol{\beta}| \leq \ell - |\boldsymbol{\alpha}|} \frac{1}{\boldsymbol{\beta}!} \overline{\partial^{\boldsymbol{\beta}} (\partial^{\alpha} f)}(x) (y - x)^{\boldsymbol{\beta}} \right| \leq \varepsilon |y - x|^{\ell - |\boldsymbol{\alpha}|} \quad \text{for all } x, y \in \overline{\Omega} \cap B(x_0; \delta_{\boldsymbol{\alpha}}).$$

Since $\partial^{\beta}(\partial^{\alpha} f)(x) = \partial^{\beta+\alpha} f(x)$ for all $x \in \Omega$, it also follows that $\overline{\partial^{\beta}(\partial^{\alpha} f)}(x) = \overline{\partial^{\beta+\alpha} f}(x)$ for all $x \in \overline{\Omega}$. Therefore Whitney's theorem can be applied, with $f_{\alpha} := \overline{\partial^{\alpha} f}$ and $\delta := \min\{\delta_{\alpha}; 0 \leq |\alpha| \leq \ell\}$. \Box

3. Extension of a Riemannian metric with a vanishing curvature

We are now in a position to prove the announced extension result. The notations are the same as in Theorem 1.3.

Theorem 3.1. Let Ω be a simply-connected open subset of \mathbb{R}^n that satisfies the strong geodesic property and let there be given a matrix field $(g_{ij}) \in C^2(\overline{\Omega}; \mathbb{S}^n_{\geq})$ that satisfies

$$R^p_{iik} = 0$$
 in Ω

Then there exist a connected open subset $\widetilde{\Omega}$ of \mathbb{R}^n containing $\overline{\Omega}$ and a matrix field $(\widetilde{g}_{ij}) \in \mathcal{C}^2(\widetilde{\Omega}; \mathbb{S}^n_{>})$ such that

$$\tilde{g}_{ij}(x) = g_{ij}(x)$$
 for all $x \in \Omega$ and $\tilde{R}^p_{ijk} = 0$ in $\tilde{\Omega}$,

where the functions $\widetilde{R}^{p}_{ijk} \in C^{0}(\widetilde{\Omega})$ denote the mixed components of the Riemann curvature tensor associated with the field (\tilde{g}_{ii}) .

Proof. Since Ω a fortiori satisfies the geodesic property and Ω is simply-connected, there exists by Theorem 1.3 a mapping $\boldsymbol{\Theta} \in \mathcal{C}^3(\overline{\Omega}; \mathbb{R}^n)$ that satisfies

$$\partial_i \boldsymbol{\Theta}(x) \cdot \partial_j \boldsymbol{\Theta}(x) = \overline{g_{ij}}(x) \quad \text{for all } x \in \Omega.$$

Since Ω satisfies the strong geodesic property, there in turn exists by Theorem 2.2 a mapping $\widetilde{\Theta} \in C^3(\mathbb{R}^n; \mathbb{R}^n)$ that satisfies

$$\widetilde{\boldsymbol{\Theta}}(x) = \boldsymbol{\Theta}(x) \quad \text{for all } x \in \Omega.$$

Let then

$$\tilde{g}_{ij}(x) := \partial_i \widetilde{\boldsymbol{\Theta}}(x) \cdot \partial_j \widetilde{\boldsymbol{\Theta}}(x) \quad \text{for all } x \in \mathbb{R}^n,$$

and define the set

$$U := \left\{ x \in \mathbb{R}^n; \left(\tilde{g}_{ij}(x) \right) \in \mathbb{S}^n_> \right\},\$$

which is open in \mathbb{R}^n and contains $\overline{\Omega}$ (since $\tilde{g}_{ij}(x) = \overline{g_{ij}}(x)$ for all $x \in \overline{\Omega}$). Finally, define the set $\widetilde{\Omega}$ as the connected component of U that contains $\overline{\Omega}$; hence the set $\widetilde{\Omega}$ is open and connected. Furthermore, the mixed components \widetilde{R}_{ijk}^p of the Riemann curvature tensor associated with the field (\tilde{g}_{ij}) are

well defined in the set $\widetilde{\Omega}$ since the matrices $(\widetilde{g}_{ij}(x))$ are by construction invertible for all $x \in \widetilde{\Omega} \subset U$.

Because $\tilde{g}_{ij}(x) = \partial_i \tilde{\boldsymbol{\Theta}}(x) \cdot \partial_j \tilde{\boldsymbol{\Theta}}(x)$ for all $x \in \tilde{\Omega}$ and the restriction $\tilde{\boldsymbol{\Theta}}|_{\tilde{\Omega}} \in C^3(\tilde{\Omega}; \mathbb{R}^n)$ is an immersion, the relations $\tilde{R}^p_{.ijk} = 0$ in $\tilde{\Omega}$ are simply the well-known necessary conditions that a Riemannian metric induced by an immersion satisfies. \Box

A similar *extension theorem for surfaces in* \mathbb{R}^3 can be likewise established; see [5,6].

Acknowledgement

The work described in this Note was supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803].

References

- [1] S. Anicic, H. Le Dret, A. Raoult, The infinitesimal rigid displacement lemma in Lipschitz coordinates and application to shells with minimal regularity, in press.
- [2] P.G. Ciarlet, F. Larsonneur, On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pures Appl. 81 (2002) 167–185.
- [3] P.G. Ciarlet, C. Mardare, On the recovery of a manifold with boundary in \mathbb{R}^n , C. R. Acad. Sci. Paris, Ser. I, in press.
- [4] P.G. Ciarlet, C. Mardare, Recovery of a manifold with boundary and its continuity as a function of its metric tensor, in press.
- [5] P.G. Ciarlet, C. Mardare, Extension of a surface in \mathbb{R}^3 , in press.
- [6] P.G. Ciarlet, C. Mardare, Recovery of a surface with boundary and its continuity as a function of its two fundamental forms, in press.
- [7] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934) 63-89.