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Abstract

Let Ω be a connected and simply-connected open subset ofRn such that the geodesic distance inΩ is equivalent to the
Euclidean distance. Let there be given a Riemannian metric(gij ) of classC2 and of vanishing curvature inΩ, such that the
functionsgij and their partial derivatives of order�2 have continuous extensions to�Ω. Then there exists a connected op

subsetΩ̃ of Rn containing �Ω and a Riemannian metric(g̃ij ) of classC2 and of vanishing curvature iñΩ that extends the
metric(gij ). To cite this article: P.G. Ciarlet, C. Mardare, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Prolongement d’une métrique riemannienne à courbure nulle.SoitΩ un ouvert connexe et simplement connexe deRn

tel que la distance géodésique dansΩ soit équivalente à la distance euclidienne. Soit(gij ) une métrique riemannienne de clas

C2 et de courbure nulle dansΩ, telle que les fonctionsgij et leurs dérivées partielles d’ordre�2 aient des extensions continu

à �Ω. Alors il existe un ouvert connexẽΩ deRn contenant�Ω et une métrique riemannienne(g̃ij ) de classeC2 et de courbure
nulle dansΩ̃ qui prolonge la métrique(gij ). Pour citer cet article : P.G. Ciarlet, C. Mardare, C. R. Acad. Sci. Paris, Ser. I 338
(2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Preliminaries

An integern � 2 is given once and for all, Latin indices and exponents vary in the set{1,2, . . . , n}, and the
summation convention with respect to repeated indices and exponents is used. The notationsSn andSn

> designate
the space of all symmetric matrices, and the set of all positive-definite symmetric matrices, of ordern. If Ω is an
open subset ofRn, we define the set

C2(Ω;S
n
>

) := {
C ∈ C2(Ω;S

n
); C(x) ∈ S

n
> for all x ∈ Ω

}
.
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We define as follows spaces of functions, vector fields, or matrix fields, “of classC� up to the boundary ofΩ”:

Definition 1.1. Let Ω be an open subset ofRn. For any integer� � 1, the spaceC�(�Ω) consists of all functions
f ∈ C�(Ω) that, together with all their partial derivatives∂αf, 1 � |α| � �, can be extended by continuity to�Ω .
Analogous definitions hold for the spacesC�(�Ω;Rn) and C�(�Ω;Sn). Any continuous extension to�Ω will be
identified by a bar.

We also define the set

C2(�Ω;S
n
>

) := {
C ∈ C2(�Ω;S

n
); �C(x) ∈ S

n
> for all x ∈ �Ω}.

LetΩ be a connected open subset ofRn. Given two pointsx, y ∈ Ω , apath joiningx to y in Ω is any mapping
γ ∈ C1([0,1];Rn) that satisfiesγ (t) ∈ Ω for all t ∈ [0,1] andγ (0) = x andγ (1) = y. Given a pathγ joining x to
y in Ω , its lengthis defined by

L(γ ) :=
1∫

0

∣∣γ ′(t)
∣∣dt,

where| · | denotes the Euclidean norm inRn.
Let Ω be a connected open subset ofRn. Thegeodesic distancebetween two pointsx, y ∈ Ω is defined by

dΩ(x, y)= inf
{
L(γ ); γ is a path joiningx to y in Ω

}
.

The following definition is in effect a mild regularity assumption on the boundary of an open subset ofRn:

Definition 1.2. An open subsetΩ of Rn satisfies thegeodesic propertyif it is connected and, given any poi
x0 ∈ ∂Ω and anyε > 0, there existsδ = δ(x0, ε) > 0 such that

dΩ(x, y) < ε for all x, y ∈ Ω ∩B(x0; δ),
whereB(x0; δ) := {y ∈ Rn; |y − x| < δ}.

Let a Riemannian metric(gij ) ∈ C2(Ω;Sn
>) be given over an open subsetΩ of Rn. The Christoffel symbols o

the second kind associated with this metric are then defined by

Γ k
ij := 1

2
gk�(∂igj� + ∂j g�i − ∂�gij ), where

(
gk�
) := (gij )

−1,

and the mixed components of its associated Riemann curvature tensor are defined by

R
p
·ijk := ∂jΓ

p
ik − ∂kΓ

p
ij + Γ �

ikΓ
p
j� − Γ �

ijΓ
p
k�.

If this tensor vanishes inΩ andΩ is simply-connected, a classical result in differential geometry asserts
(gij ) is the metric tensor field of a manifoldΘ(Ω) that is isometrically immersed inRn. More specifically (see
e.g., Ciarlet and Larsonneur [2, Theorem 2] for an elementary and self-contained proof),there exists an immersio
Θ ∈ C3(Ω;R

n) that satisfies

∂iΘ(x) · ∂jΘ(x) = gij (x) for all x ∈ Ω,

and, if in additionΩ is connected, such an immersion is unique up to isometries inRn.
In [3] (see [4] for a complete proof), we indicated how amanifold with boundary, i.e., a subset ofRn of the form

Θ(�Ω), can be likewise recovered from a metric tensor field that, together with its partial derivatives of ord�2,
can be continuously extended to theclosure �Ω in such a way that the continuous extensions of the matrices(gij )



P.G. Ciarlet, C. Mardare / C. R. Acad. Sci. Paris, Ser. I 338 (2004) 391–396 393

ded as

etric
a
n

rst

a

esic

, e.g., a

en an
ly

eger

n the
t (iv).
remain positive-definite in�Ω . More specifically, in [3,4] the above existence and uniqueness result is exten
follows “up to the boundary ofΩ”:

Theorem 1.3. Let Ω be a simply-connected open subset ofRn that satisfies the geodesic property(see
Definition 1.2). Let there be given a matrix field(gij ) ∈ C2(�Ω;Sn

>) (in the sense of Definition 1.1)that satisfies

R
p

·ijk = 0 in Ω.

Then there exists a mappingΘ ∈ C3(�Ω;R
n) (again in the sense of Definition 1.1)that satisfies(the notations∂iΘ

andgij represent the continuous extensions of the fields∂iΘ and of the functionsgij , according to Definition 1.1):

∂iΘ(x) · ∂jΘ(x) = gij (x) for all x ∈ �Ω,

and such a mapping is unique up to isometries inRn.

2. Another definition of the spaceC�(�Ω)

The final objective of this Noteis to provide sufficient conditions guaranteeing that a Riemannian m
(gij ) ∈ C2(Ω;Sn

>) with a Riemann curvature tensor vanishing in an open subsetΩ of Rn can be extended to
Riemannian metric(g̃ij ) ∈ C2(Ω̃;Sn

>) on a connected open set̃Ω containing�Ω , in such a way that the Rieman
curvature tensor associated with this extension still vanishes inΩ̃ (see Theorem 3.1).

To this end, another characterization of the spaceC�(�Ω) is needed (see Theorem 2.2). This is why we fi
introduce another notion of “geodesic property”, stronger than that introduced in Definition 1.2.

Definition 2.1. An open subsetΩ of Rn satisfies thestrong geodesic propertyif it is connected and there exists
constantCΩ such that

dΩ(x, y)� CΩ |x − y| for all x, y ∈ Ω,

wheredΩ designates the geodesic distance inΩ (cf. Section 1).

Remarks.(1) Any connected open subset ofRn with a Lipschitz-continuous boundary satisfies the strong geod
property; for a proof, see, e.g., Proposition 5.1 in Anicic, Le Dret and Raoult [1].

(2) The strong geodesic property clearly implies the geodesic property, but not conversely; consider
bounded open subset ofR

2 whose boundary is a cardioid.

The following theorem, which hinges in particular on a profound result of Whitney [7] shows that, wh
open setΩ satisfies the strong geodesic property, the spaceC�(�Ω) introduced in Definition 1.1 admits a remarkab
simple characterization. This result will in turn play a key role in the announced extension theorem.

Theorem 2.2.Let Ω be an open subset ofRn that satisfies the strong geodesic property. Then for any int
� � 1, the spaceC�(�Ω) of Definition1.1can be also defined as

C�
(�Ω)= {

f |Ω ∈ C�(Ω); f ∈ C�
(
R

n
)}
.

Sketch of proof. The proof, which is only briefly sketched here (see [4] for a complete proof), hinges o
following steps. Note that the assumption thatΩ satisfies the strong geodesic property is not needed until par

(i) To begin with, we list somenotationsused throughout this proof. Given a multi-indexα = (α1, α2, . . . , αn) ∈
Nn, we let
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|α| :=
∑
i

αi and ∂α := ∂ |α|

∂x
α1
1 ∂x

α2
2 . . . ∂x

αn
n

if |α| � 1,

0 := (0,0, . . . ,0) and ∂0f := f,

0! := 1 and α! := (α1!)(α2!) · · · (αn!).
If x = (xi) andy = (yi) are two points inRn, we let

(y − x)0 := 1 and (y − x)α := (y1 − x1)
α1(y2 − x2)

α2 · · · (yn − xn)
αn .

Concurrently with the multi-index notation∂αf for partial derivatives we also use the notations

∂i1f := ∂f

∂xi1
, . . . , ∂i1i2...imf := ∂mf

∂xi1∂xi2 · · ·∂xim
,

with the understanding that, whenever a summation involves such indicesi1, i2, . . . , im, then they range in the se
{1,2, . . . , n} independently of each other.

(ii) Let Ω be a connected open subset ofRn, let x andy be two points inΩ , and letγ = (γi) ∈ C1([0,1];Rn)

be a path joiningx to y in Ω . Then any functionf ∈ Cm(Ω), m � 1, satisfies the following identity, which may b
viewed as aTaylor formula along a path:

f (y) = f (x)+ 1

1!∂i1f (x)(yi1 − xi1)+ · · · + 1

(m− 1)!∂i1...im−1f (x)(yi1 − xi1) · · · (yim−1 − xim−1)

+
1∫

0

( t1∫
0

· · ·
( tm−2∫

0

( tm−1∫
0

∂i1...imf
(
γ (tm)

)
γ ′
im
(tm)dtm

)
γ ′
im−1

(tm−1)dtm−1

)
· · ·dt2

)
γ ′
i1
(t1)dt1.

(iii) The identity established in (ii) in turn implies the following estimate, which may be viewed as ageneralized
mean-valued theorem along a path: Let Ω be a connected open subset ofRn, let x andy be two points inΩ , let
γ ∈ C1([0,1];Rn) be a path joiningx to y in Ω , and let a functionf ∈ Cm(Ω), m � 1, be given. Then∣∣∣∣f (y)−

∑
|β|�m

1

β!∂
βf (x)(y − x)β

∣∣∣∣� L(γ )m
{ ∑

|α|=m

1

α! sup
z∈γ ([0,1])

∣∣∂αf (z)− ∂αf (x)
∣∣2}1/2

,

whereL(γ ) denotes the length of the pathγ .
(iv) The strong geodesic property then allows to get rid of the dependence on the pathγ in the estimate

found in (iii), according to the following sharpened estimate: LetΩ be an open subset ofRn that satisfies the
strong geodesic property and let a functionf ∈ Cm(�Ω), m � 1, be given, the spaceCm(�Ω) being defined as in
Definition 1.1. Then, given any pointx0 ∈ �Ω and any numberε > 0, there existsδ = δ(x0, ε) such that∣∣∣∣�f (y)−

∑
|β|�m

1

β!∂
βf (x)(y − x)β

∣∣∣∣� ε|y − x|m for all x, y ∈ �Ω ∩B(x0; δ),

where �f ∈ C0(�Ω) and∂βf ∈ C0(�Ω), 1 � |β| � m, denote the continuous extensions of the functionsf ∈ C0(Ω)

and∂βf ∈ C0(Ω).
(v) Let there be given a functionf in the spaceC�(�Ω), � � 1, according to Definition 1.1. According to a de

result of Whitney [7],f is also the restriction toΩ of a function in the spaceC�(Rn) if, for each multi-indexα
satisfying0 � |α| � �, there exist functionsfα ∈ C0(�Ω) with the following property: For any pointsx, y ∈ �Ω and
any multi-indexα satisfying0 � |α| � �, let

Rα(y;x) := fα(y)−
∑

|β|��−|α|

1

β!fα+β(x)(y − x)β .
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Then, given any pointx0 ∈ �Ω and any numberε > 0, there existsδ = δ(x0, ε) such that∣∣Rα(y;x)∣∣� ε|y − x|�−|α| for all x, y ∈ �Ω ∩B(x0; δ) and 0� |α| � �.

To verify that this is indeed the case, letx0 ∈ �Ω andε > 0 be given. Then the estimate of part (iv) applied
each function∂αf , 0 � |α| � �, shows that there existsδα = δα(x0, ε) such that∣∣∣∣∂αf −

∑
|β|��−|α|

1

β!∂
β(∂αf )(x)(y − x)β

∣∣∣∣� ε|y − x|�−|α| for all x, y ∈ �Ω ∩B(x0; δα).

Since ∂β(∂αf )(x) = ∂β+αf (x) for all x ∈ Ω , it also follows that∂β(∂αf )(x) = ∂β+αf (x) for all x ∈ �Ω .
Therefore Whitney’s theorem can be applied, withfα := ∂αf andδ := min{δα;0� |α| � �}. ✷

3. Extension of a Riemannian metric with a vanishing curvature

We are now in a position to prove the announced extension result. The notations are the same as in The

Theorem 3.1.Let Ω be a simply-connected open subset ofR
n that satisfies the strong geodesic property and

there be given a matrix field(gij ) ∈ C2(�Ω;Sn
>) that satisfies

R
p
·ijk = 0 in Ω.

Then there exist a connected open subsetΩ̃ of Rn containing�Ω and a matrix field(g̃ij ) ∈ C2(Ω̃;Sn
>) such that

g̃ij (x) = gij (x) for all x ∈ Ω and R̃
p

·ijk = 0 in Ω̃,

where the functions̃Rp
·ijk ∈ C0(Ω̃) denote the mixed components of the Riemann curvature tensor associate

the field(g̃ij ).

Proof. SinceΩ a fortiori satisfies the geodesic property andΩ is simply-connected, there exists by Theorem
a mappingΘ ∈ C3(�Ω;R

n) that satisfies

∂iΘ(x) · ∂jΘ(x) = gij (x) for all x ∈ �Ω.

SinceΩ satisfies the strong geodesic property, there in turn exists by Theorem 2.2 a mappingΘ̃ ∈ C3(Rn;Rn) that
satisfies

Θ̃(x) = Θ(x) for all x ∈ Ω.

Let then

g̃ij (x) := ∂iΘ̃(x) · ∂j Θ̃(x) for all x ∈ R
n,

and define the set

U := {
x ∈ R

n; (g̃ij (x)) ∈ S
n
>

}
,

which is open inRn and contains�Ω (sinceg̃ij (x) = gij (x) for all x ∈ �Ω). Finally, define the set̃Ω as the connecte
component ofU that contains�Ω ; hence the set̃Ω is open and connected.

Furthermore, the mixed components̃R
p

·ijk of the Riemann curvature tensor associated with the field(g̃ij ) are

well defined in the set̃Ω since the matrices(g̃ij (x)) are by construction invertible for allx ∈ Ω̃ ⊂ U .
Becauseg̃ij (x) = ∂iΘ̃(x) · ∂j Θ̃(x) for all x ∈ Ω̃ and the restrictioñΘ|Ω̃ ∈ C3(Ω̃;Rn) is an immersion, the

relationsR̃p
·ijk = 0 in Ω̃ are simply the well-known necessary conditions that a Riemannian metric induced

immersion satisfies. ✷
A similar extension theorem for surfaces inR3 can be likewise established; see [5,6].
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