

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 338 (2004) 403-406

Topology

The extended mapping class group is generated by 3 symmetries

Michał Stukow¹

Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland

Received 3 October 2003; accepted after revision 29 December 2003

Presented by Étienne Ghys

Abstract

We prove that for $g \ge 1$ the extended mapping class group is generated by three orientation reversing involutions. *To cite this article: M. Stukow, C. R. Acad. Sci. Paris, Ser. I 338 (2004).*

© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Le groupe modulaire étendu est engendré par 3 symétries. Nous prouvons que pour chaque $g \ge 1$ le groupe modulaire étendu est éngendré par trois involutions qui inversent l'orientation. *Pour citer cet article : M. Stukow, C. R. Acad. Sci. Paris, Ser. I 338 (2004).*

© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let S_g be a closed orientable surface of genus g. Denote by \mathcal{M}_g^{\pm} the *extended mapping class group*, i.e., the group of isotopy classes of homeomorphisms of S_g . By \mathcal{M}_g we denote the *mapping class group*, i.e., the subgroup of \mathcal{M}_g^{\pm} consisting of orientation preserving maps. We will make no distinction between a map and its isotopy class, so in particular by the order of a homeomorphism $h: S_g \to S_g$ we mean the order of its class in \mathcal{M}_g^{\pm} .

By C_i , U_i , Z_i we denote the right Dehn twists along the curves c_i , u_i , z_i indicated in Fig. 1. It is known that this set of generators of \mathcal{M}_g is not minimal, and a great deal of attention has been paid to the problem of finding a minimal (or at least small) set of generators or a set of generators with some additional property. For different approaches to this problem see [3,5,7,8,10,11] and references there. The main purpose of this Note is to prove that for $g \ge 1$ the extended mapping class group \mathcal{M}_g^{\pm} is generated by three symmetries, i.e. orientation reversing involutions. This generalises a well known fact for $\mathcal{M}_1^{\pm} \cong GL(2, \mathbb{Z})$.

As was observed in [4], the fact that \mathcal{M}_g^{\pm} is generated by symmetries is rather simple. Namely, suppose that S_g is embedded in \mathbb{R}^3 as shown in Fig. 1. Define the *sandwich symmetry* $\tau: S_g \to S_g$ as a reflection across the *yz*-plane. Now if *u* is any of the curves indicated in Fig. 1, then the twist *U* along this curve satisfies the relation:

E-mail address: trojkat@math.univ.gda.pl (M. Stukow).

¹ Supported by BW 5100-5-0080-3.

¹⁶³¹⁻⁰⁷³X/\$ - see front matter © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2003.12.028

 $\tau U\tau = U^{-1}$, i.e. the element τU is a symmetry. This proves that each of generating twists is a product of two symmetries. Note that for the composition of mappings we use the following convention: fg means that g is applied first.

2. Preliminaries

Suppose that S_g , for $g \ge 2$, is embedded in \mathbb{R}^3 as shown in Fig. 1. Let $\rho: S_g \to S_g$ be a hyperelliptic involution, i.e., the half turn about y-axis.

The hyperelliptic mapping class group \mathcal{M}_g^h is defined to be the centraliser of ρ in \mathcal{M}_g . By [2] the quotient $\mathcal{M}_g^h/\langle \rho \rangle$ is isomorphic to the mapping class group $\mathcal{M}_{0,2g+2}$ of a sphere $S_{0,2g+2}$ with 2g + 2 marked points P_1, \ldots, P_{2g+2} . This set of marked points corresponds (under the canonical projection) to fixed points of ρ (Fig. 1). In a similar way, we define the *extended hyperelliptic mapping class group* $\mathcal{M}_g^{h\pm}$ which projects onto the extended mapping class group $\mathcal{M}_{0,2g+2}^{\pm}$ of $S_{0,2g+2}$. Denote this projection by $\pi : \mathcal{M}_g^{h\pm} \to \mathcal{M}_{0,2g+2}^{\pm}$. In case g = 2 it is known that $\mathcal{M}_2 = \mathcal{M}_2^h$ and $\mathcal{M}_2^{\pm} = \mathcal{M}_2^{h\pm}$.

Denote by $\sigma_1, \sigma_2, \ldots, \sigma_{2g+1}$ the images under π of twist generators $C_1, U_1, Z_1, U_2, Z_2, \ldots, U_g, Z_g$ respectively. These generators of $\mathcal{M}_{0,2g+2}$ are closely related to Artin braids, cf. [2].

Let $\tilde{M}: S_{0,2g+2} \to S_{0,2g+2}$ be a rotation of order 2g + 1 with a fixed point P_1 such that: $\tilde{M}(P_i) = P_{i+1}$, for i = 2, ..., 2g + 1 and $\tilde{M}(P_{2g+2}) = P_2$ (Fig. 2). In terms of the generators $\sigma_1, ..., \sigma_{2g+1}$ we have:

$$M = \sigma_2 \sigma_3 \cdots \sigma_{2g+1}. \tag{1}$$

If $M' \in \mathcal{M}_g$ is the lifting of \widetilde{M} of order 2g + 1, then $M = \rho M'$ is the lifting of \widetilde{M} for which $M^{2g+1} = \rho$. In particular M has order 4g + 2. Using the technique described in [10] it is easy to write M as a product of twists: $M = U_1 Z_1 U_2 Z_2 \cdots U_g Z_g$.

Since every finite subgroup of \mathcal{M}_g can be realised as the group of automorphisms of a Riemann surface [6], M has maximal order among torsion elements of \mathcal{M}_g [12]. Geometric properties of M played a crucial role in the problem of finding particular sets of generators for \mathcal{M}_g and \mathcal{M}_g^{\pm} , cf. [3,7,8,11].

Following [1], let $t_1, s_1, \ldots, t_g, s_g$ be generators of the fundamental group $\pi_1(S_g)$ as in Fig. 3. In terms of these generators, $\pi_1(S_g)$ has the single defining relation: $R = s_g^{t_g} s_{g-1}^{t_{g-1}} \cdots s_1^{t_1} s_1^{-1} s_2^{-1} \cdots s_g^{-1}$, where by a^b we denote the conjugation bab^{-1} .

It is well known [9] that the mapping class group \mathcal{M}_g^{\pm} is isomorphic to the group $\operatorname{Out}(\pi_1(S_g))$ of outer automorphisms of $\pi_1(S_g)$. In terms of this isomorphism, elements of \mathcal{M}_g correspond to the elements of $\operatorname{Out}(\pi_1(S_g))$ which map the relation R to its conjugate, and elements of $\mathcal{M}_g^{\pm} \setminus \mathcal{M}_g$ to those elements of $\operatorname{Out}(\pi_1(S_g))$ which map R to a conjugate of R^{-1} .

Fig. 1. Surface S_g embedded in \mathbb{R}^3 .

Fig. 2. Rotation \widetilde{M} .

M. Stukow / C. R. Acad. Sci. Paris, Ser. I 338 (2004) 403-406

Fig. 3. Generators of $\pi_1(S_g)$.

Using representations of twist generators as automorphisms of $\pi_1(S_g)$ [1] we could derive the following representation for the rotation *M*:

$$M: t_i \mapsto s_i^{t_i} \cdots s_1^{t_1} t_1 \qquad \text{for } i = 1, \dots, g,$$

$$s_i \mapsto t_1^{-1} s_1^{-t_1} \cdots s_i^{-t_i} t_{i+1} t_i^{-1} s_i^{t_i} \cdots s_1^{t_1} t_1 \quad \text{for } i = 1, \dots, g-1,$$

$$s_g \mapsto t_1^{-1} s_1^{-t_1} \cdots s_g^{-t_g} t_g^{-1} s_g^{t_g} \cdots s_1^{t_1} t_1.$$

As in the case of maps and their isotopy classes, we abuse terminology by identifying an element of $Out(\pi_1(S_g))$ with its representative in $Aut(\pi_1(S_g))$.

3. \mathcal{M}_{g}^{\pm} is generated by 3 symmetries

If we represent the action of the rotation \widetilde{M} as the orthogonal action on the unit sphere, it becomes obvious that \widetilde{M} can be written as a product of two symmetries. To be more precise, if $\tilde{\varepsilon}_1$ is the symmetry across the plane passing through P_1 , P_g and the center of the sphere (Fig. 2), then $\widetilde{M} = \tilde{\varepsilon}_1 \tilde{\varepsilon}_2$, where $\tilde{\varepsilon}_2$ is another symmetry.

Tedious but straightforward computations show that one of the liftings $\varepsilon_1 \in \mathcal{M}_g^{\pm}$ of $\tilde{\varepsilon}_1$ has the following representation as an automorphism of $\pi_1(S_g)$:

$$\varepsilon_{1}: t_{i} \mapsto t_{g-1}^{-1} s_{1}^{-1} \cdots s_{g-1-i}^{-1}, \quad s_{i} \mapsto t_{g-1-i}^{-1} t_{g-i} \quad \text{for } i = 1, \dots, g-2,$$

$$t_{g-1} \mapsto t_{g-1}^{-1}, \quad s_{g-1} \mapsto s_{g} \cdots s_{1} t_{1}, \quad t_{g} \mapsto t_{g-1}^{-1} t_{g}, \quad s_{g} \mapsto s_{g}^{-1}.$$

To obtain the above representation we proceed as follows: take a generator u of $\pi_1(S_g)$, find the image \tilde{u} of u under projection $S_g \to S_{0,2g+2}$, find $\tilde{\varepsilon}_1(\tilde{u})$, lift back $\tilde{\varepsilon}_1(\tilde{u})$ to S_g and finally express the obtained loop as a product of generators $t_1, s_1, \ldots, t_g, s_g$ of $\pi_1(S_g)$.

We would like to point out that although the above procedure is a bit subtle, it is quite simple to verify that the obtained formulas are correct. In fact, it is enough to check that $\varepsilon_1^2 = 1$ and $\varepsilon_1(R)$ is conjugate to R^{-1} . Moreover, the representation of $\varepsilon_2 = \varepsilon_1 M$ is given by the following formulas:

$$\varepsilon_{2}:t_{i} \mapsto \left(t_{g-1}^{-1}s_{1}^{-1}\cdots s_{g-1-i}^{-1}t_{g-1-i}^{-1}\right)\left(s_{g-i}^{-t_{g-i}}\cdots s_{g-1}^{-t_{g-1}}\right)t_{g-1}s_{g-1} \quad \text{for } i=1,\ldots,g-2,$$

$$t_{g-1} \mapsto t_{g-1}^{-1}s_{g}^{t_{g}}t_{g-1}s_{g-1}, \quad t_{g} \mapsto s_{g-1},$$

$$s_{i} \mapsto s_{g-1}^{-1}t_{g-1}^{-1}\left(s_{g-1}^{t_{g-1}}\cdots s_{g-i}^{t_{g-i}}\right)\left(s_{g-1-i}^{t_{g-1}-i}\cdots s_{g-1}^{-t_{g-1}}\right)t_{g-1}s_{g-1} \quad \text{for } i=1,\ldots,g-2,$$

$$s_{g-1} \mapsto \left(s_{g-1}^{-1}t_{g-1}^{-1}s_{g}^{-t_{g}}\right)t_{g}\left(s_{g}^{t_{g}}t_{g-1}s_{g-1}\right), \quad s_{g} \mapsto s_{g-1}^{-1}t_{g-1}^{-1}t_{g-1}s_{g-1}.$$

It is straightforward to verify that ε_2^2 is an identity in $Out(\pi_1(S_g))$.

Theorem 3.1. For each $g \ge 1$, the extended mapping class group \mathcal{M}_g^{\pm} is generated by three symmetries.

405

Proof. As observed in the introduction, the result is well known for g = 1, but for the sake of completeness let us prove this in more geometric way. Since $\mathcal{M}_1 = \langle U_1, C_1 \rangle$ (Fig. 1) and $\tau U_1 \tau = U_1^{-1}$, $\tau C_1 \tau = C_1^{-1}$, the group \mathcal{M}_1^{\pm} is generated by the symmetries τ , τU_1 , τC_1 .

Now suppose that $g \ge 2$. Let ε_1 and $\varepsilon_2 = \varepsilon_1 M$ be the symmetries defined above. Since $\varepsilon_1(t_{g-1}) = t_{g-1}^{-1}$ we have $\varepsilon_1 C_{g-1} \varepsilon_1 = C_{g-1}^{-1}$, i.e., $\varepsilon_3 = \varepsilon_1 C_{g-1}$ is a symmetry. In particular $\langle \varepsilon_1, \varepsilon_2, \varepsilon_3 \rangle \supset \langle \varepsilon_1 \varepsilon_2, \varepsilon_1 \varepsilon_3 \rangle = \langle M, C_{g-1} \rangle$. But by [7] the latter group is equal to \mathcal{M}_g . Since $\langle \varepsilon_1, \varepsilon_2, \varepsilon_3 \rangle$ contains orientation reversing element, this proves that $\langle \varepsilon_1, \varepsilon_2, \varepsilon_3 \rangle = \mathcal{M}_g^{\pm}$. \Box

Acknowledgement

The author wishes to thank the referee for his/her helpful suggestions.

References

- [1] J. Birman, Automorphisms of the fundamental group of a closed, orientable 2-manifold, Proc. Amer. Math. Soc. 21 (1969) 351–354.
- [2] J. Birman, H. Hilden, On mapping class groups of closed surfaces as covering spaces, in: Advances in the Theory of Riemann Surfaces, in: Ann. of Math. Stud., vol. 66, Princeton University Press, Princeton, NJ, 1971, pp. 81–115.
- [3] T. Brendle, B. Farb, Every mapping class group is generated by 3 torsion elements and by 7 involutions, Preprint 2003.
- [4] G. Gromadzki, M. Stukow, Involving symmetries of Riemann surfaces to a study of the mapping class group, Publ. Mat., in press.
- [5] S. Humphries, Generators for the mapping class group, in: Topology of Low-Dimensional Manifolds, in: Lecture Notes in Math., vol. 722, Springer, 1979, pp. 44–47.
- [6] S. Kerckhoff, The Nielsen realization problem, Ann. of Math. 117 (1983) 235-265.
- [7] M. Korkmaz, Generating the surface mapping class group by two elements, Preprint, 2003.
- [8] C. Maclachlan, Modulus space is simply-connected, Proc. Amer. Math. Soc. 29 (1971) 85-86.
- [9] W. Magnus, A. Karass, D. Solitar, Combinatorial Group Theory, Interscience, New York, 1966.
- [10] J. McCarthy, A. Papadopoulos, Involutions in surface mapping class groups, Enseign. Math. 33 (1987) 275-290.
- [11] B. Wajnryb, Mapping class group of a surface is generated by two elements, Topology 35 (1996) 377–383.
- [12] A. Wiman, Über die hyperelliptischen Kurven und diejenigen vom Geschlecht p = 3, welche eindeutige Transformationen in sich zulassen, Bihang Till. Kongl. Svenska Vetenskaps-Akademiens Handl. 21 (1895) 1–23.