ELSEVIER

Topology

The extended mapping class group is generated by 3 symmetries

Michał Stukow ${ }^{1}$
Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland
Received 3 October 2003; accepted after revision 29 December 2003
Presented by Étienne Ghys

Abstract

We prove that for $g \geqslant 1$ the extended mapping class group is generated by three orientation reversing involutions. To cite this article: M. Stukow, C. R. Acad. Sci. Paris, Ser. I 338 (2004). © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Le groupe modulaire étendu est engendré par 3 symétries. Nous prouvons que pour chaque $g \geqslant 1$ le groupe modulaire étendu est éngendré par trois involutions qui inversent l'orientation. Pour citer cet article: M. Stukow, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let S_{g} be a closed orientable surface of genus g. Denote by $\mathcal{M}_{g}^{ \pm}$the extended mapping class group, i.e., the group of isotopy classes of homeomorphisms of S_{g}. By \mathcal{M}_{g} we denote the mapping class group, i.e., the subgroup of $\mathcal{M}_{g}^{ \pm}$consisting of orientation preserving maps. We will make no distinction between a map and its isotopy class, so in particular by the order of a homeomorphism $h: S_{g} \rightarrow S_{g}$ we mean the order of its class in $\mathcal{M}_{g}^{ \pm}$.

By C_{i}, U_{i}, Z_{i} we denote the right Dehn twists along the curves c_{i}, u_{i}, z_{i} indicated in Fig. 1. It is known that this set of generators of \mathcal{M}_{g} is not minimal, and a great deal of attention has been paid to the problem of finding a minimal (or at least small) set of generators or a set of generators with some additional property. For different approaches to this problem see $[3,5,7,8,10,11]$ and references there. The main purpose of this Note is to prove that for $g \geqslant 1$ the extended mapping class group $\mathcal{M}_{g}^{ \pm}$is generated by three symmetries, i.e. orientation reversing involutions. This generalises a well known fact for $\mathcal{M}_{1}^{ \pm} \cong \mathrm{GL}(2, \mathbb{Z})$.

As was observed in [4], the fact that $\mathcal{M}_{g}^{ \pm}$is generated by symmetries is rather simple. Namely, suppose that S_{g} is embedded in \mathbb{R}^{3} as shown in Fig. 1. Define the sandwich symmetry $\tau: S_{g} \rightarrow S_{g}$ as a reflection across the $y z$-plane. Now if u is any of the curves indicated in Fig. 1, then the twist U along this curve satisfies the relation:

[^0]$\tau U \tau=U^{-1}$, i.e. the element τU is a symmetry. This proves that each of generating twists is a product of two symmetries. Note that for the composition of mappings we use the following convention: $f g$ means that g is applied first.

2. Preliminaries

Suppose that S_{g}, for $g \geqslant 2$, is embedded in \mathbb{R}^{3} as shown in Fig. 1. Let $\rho: S_{g} \rightarrow S_{g}$ be a hyperelliptic involution, i.e., the half turn about y-axis.

The hyperelliptic mapping class group \mathcal{M}_{g}^{h} is defined to be the centraliser of ρ in \mathcal{M}_{g}. By [2] the quotient $\mathcal{M}_{g}^{h} /\langle\rho\rangle$ is isomorphic to the mapping class group $\mathcal{M}_{0,2 g+2}$ of a sphere $S_{0,2 g+2}$ with $2 g+2$ marked points $P_{1}, \ldots, P_{2 g+2}$. This set of marked points corresponds (under the canonical projection) to fixed points of ρ (Fig. 1). In a similar way, we define the extended hyperelliptic mapping class group $\mathcal{M}_{g}^{h \pm}$ which projects onto the extended mapping class group $\mathcal{M}_{0,2 g+2}^{ \pm}$of $S_{0,2 g+2}$. Denote this projection by $\pi: \mathcal{M}_{g}^{h \pm} \rightarrow \mathcal{M}_{0,2 g+2}^{ \pm}$. In case $g=2$ it is known that $\mathcal{M}_{2}=\mathcal{M}_{2}^{h}$ and $\mathcal{M}_{2}^{ \pm}=\mathcal{M}_{2}^{h \pm}$.

Denote by $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{2 g+1}$ the images under π of twist generators $C_{1}, U_{1}, Z_{1}, U_{2}, Z_{2}, \ldots, U_{g}, Z_{g}$ respectively. These generators of $\mathcal{M}_{0,2 g+2}$ are closely related to Artin braids, cf. [2].

Let $\widetilde{M}: S_{0,2 g+2} \rightarrow S_{0,2 g+2}$ be a rotation of order $2 g+1$ with a fixed point P_{1} such that: $\widetilde{M}\left(P_{i}\right)=P_{i+1}$, for $i=2, \ldots, 2 g+1$ and $\widetilde{M}\left(P_{2 g+2}\right)=P_{2}$ (Fig. 2). In terms of the generators $\sigma_{1}, \ldots, \sigma_{2 g+1}$ we have:

$$
\begin{equation*}
\tilde{M}=\sigma_{2} \sigma_{3} \cdots \sigma_{2 g+1} \tag{1}
\end{equation*}
$$

If $M^{\prime} \in \mathcal{M}_{g}$ is the lifting of \tilde{M} of order $2 g+1$, then $M=\rho M^{\prime}$ is the lifting of \tilde{M} for which $M^{2 g+1}=\rho$. In particular M has order $4 g+2$. Using the technique described in [10] it is easy to write M as a product of twists: $M=U_{1} Z_{1} U_{2} Z_{2} \cdots U_{g} Z_{g}$.

Since every finite subgroup of \mathcal{M}_{g} can be realised as the group of automorphisms of a Riemann surface [6], M has maximal order among torsion elements of \mathcal{M}_{g} [12]. Geometric properties of M played a crucial role in the problem of finding particular sets of generators for \mathcal{M}_{g} and $\mathcal{M}_{g}^{ \pm}$, cf. [3,7,8,11].

Following [1], let $t_{1}, s_{1}, \ldots, t_{g}, s_{g}$ be generators of the fundamental group $\pi_{1}\left(S_{g}\right)$ as in Fig. 3. In terms of these generators, $\pi_{1}\left(S_{g}\right)$ has the single defining relation: $R=s_{g}^{t_{g}} s_{g-1}^{t_{g-1}} \cdots s_{1}^{t_{1}} s_{1}^{-1} s_{2}^{-1} \cdots s_{g}^{-1}$, where by a^{b} we denote the conjugation $b a b^{-1}$.

It is well known [9] that the mapping class group $\mathcal{M}_{g}^{ \pm}$is isomorphic to the group $\operatorname{Out}\left(\pi_{1}\left(S_{g}\right)\right)$ of outer automorphisms of $\pi_{1}\left(S_{g}\right)$. In terms of this isomorphism, elements of \mathcal{M}_{g} correspond to the elements of $\operatorname{Out}\left(\pi_{1}\left(S_{g}\right)\right)$ which map the relation R to its conjugate, and elements of $\mathcal{M}_{g}^{ \pm} \backslash \mathcal{M}_{g}$ to those elements of $\operatorname{Out}\left(\pi_{1}\left(S_{g}\right)\right)$ which map R to a conjugate of R^{-1}.

Fig. 1. Surface S_{g} embedded in \mathbb{R}^{3}.

Fig. 2. Rotation \tilde{M}.

Fig. 3. Generators of $\pi_{1}\left(S_{g}\right)$.

Using representations of twist generators as automorphisms of $\pi_{1}\left(S_{g}\right)$ [1] we could derive the following representation for the rotation M :

$$
\begin{aligned}
M: t_{i} & \mapsto s_{i}^{t_{i}} \cdots s_{1}^{t_{1}} t_{1} & & \text { for } i=1, \ldots, g, \\
s_{i} & \mapsto t_{1}^{-1} s_{1}^{-t_{1}} \cdots s_{i}^{-t_{i}} t_{i+1} t_{i}^{-1} s_{i}^{t_{i}} \cdots s_{1}^{t_{1}} t_{1} & & \text { for } i=1, \ldots, g-1, \\
s_{g} & \mapsto t_{1}^{-1} s_{1}^{-t_{1}} \cdots s_{g}^{-t_{g}} t_{g}^{-1} s_{g}^{t_{g}} \cdots s_{1}^{t_{1}} t_{1} . & &
\end{aligned}
$$

As in the case of maps and their isotopy classes, we abuse terminology by identifying an element of $\operatorname{Out}\left(\pi_{1}\left(S_{g}\right)\right)$ with its representative in $\operatorname{Aut}\left(\pi_{1}\left(S_{g}\right)\right)$.

3. $\mathcal{M}_{g}^{ \pm}$is generated by $\mathbf{3}$ symmetries

If we represent the action of the rotation \tilde{M} as the orthogonal action on the unit sphere, it becomes obvious that \widetilde{M} can be written as a product of two symmetries. To be more precise, if $\tilde{\varepsilon}_{1}$ is the symmetry across the plane passing through P_{1}, P_{g} and the center of the sphere (Fig. 2), then $\widetilde{M}=\tilde{\varepsilon}_{1} \tilde{\varepsilon}_{2}$, where $\tilde{\varepsilon}_{2}$ is another symmetry.

Tedious but straightforward computations show that one of the liftings $\varepsilon_{1} \in \mathcal{M}_{g}^{ \pm}$of $\tilde{\varepsilon}_{1}$ has the following representation as an automorphism of $\pi_{1}\left(S_{g}\right)$:

$$
\begin{gathered}
\varepsilon_{1}: t_{i} \mapsto t_{g-1}^{-1} s_{1}^{-1} \cdots s_{g-1-i}^{-1}, \quad s_{i} \mapsto t_{g-1-i}^{-1} t_{g-i} \quad \text { for } i=1, \ldots, g-2, \\
t_{g-1} \mapsto t_{g-1}^{-1}, \quad s_{g-1} \mapsto \quad s_{g} \cdots s_{1} t_{1}, \quad t_{g} \mapsto t_{g-1}^{-1} t_{g}, \quad s_{g} \mapsto s_{g}^{-1}
\end{gathered}
$$

To obtain the above representation we proceed as follows: take a generator u of $\pi_{1}\left(S_{g}\right)$, find the image \tilde{u} of u under projection $S_{g} \rightarrow S_{0,2 g+2}$, find $\tilde{\varepsilon}_{1}(\tilde{u})$, lift back $\tilde{\varepsilon}_{1}(\tilde{u})$ to S_{g} and finally express the obtained loop as a product of generators $t_{1}, s_{1}, \ldots, t_{g}, s_{g}$ of $\pi_{1}\left(S_{g}\right)$.

We would like to point out that although the above procedure is a bit subtle, it is quite simple to verify that the obtained formulas are correct. In fact, it is enough to check that $\varepsilon_{1}^{2}=1$ and $\varepsilon_{1}(R)$ is conjugate to R^{-1}. Moreover, the representation of $\varepsilon_{2}=\varepsilon_{1} M$ is given by the following formulas:

$$
\begin{aligned}
\varepsilon_{2}: t_{i} & \mapsto\left(t_{g-1}^{-1} s_{1}^{-1} \cdots s_{g-1-i}^{-1} t_{g-1-i}^{-1}\right)\left(s_{g-i}^{-t_{g-i}} \cdots s_{g-1}^{-t_{g-1}}\right) t_{g-1} s_{g-1} \quad \text { for } i=1, \ldots, g-2, \\
t_{g-1} & \mapsto t_{g-1}^{-1} s_{g}^{t_{g}} t_{g-1} s_{g-1}, \quad t_{g} \mapsto s_{g-1}, \\
& s_{i} \mapsto s_{g-1}^{-1} t_{g-1}^{-1}\left(s_{g-1}^{t_{g-1}} \cdots s_{g-i}^{t_{g-i}}\right)\left(s_{g-1-i}^{t_{g-1-i}}\right)\left(s_{g-i}^{-t_{g-i}} \cdots s_{g-1}^{-t_{g-1}}\right) t_{g-1} s_{g-1} \quad \text { for } i=1, \ldots, g-2, \\
s_{g-1} & \mapsto\left(s_{g-1}^{-1} t_{g-1}^{-1} s_{g}^{-t_{g}}\right) t_{g}\left(s_{g}^{t_{g}} t_{g-1} s_{g-1}\right), \quad s_{g} \mapsto s_{g-1}^{-1} t_{g}^{-1} t_{g-1} s_{g-1} .
\end{aligned}
$$

It is straightforward to verify that ε_{2}^{2} is an identity in $\operatorname{Out}\left(\pi_{1}\left(S_{g}\right)\right)$.
Theorem 3.1. For each $g \geqslant 1$, the extended mapping class group $\mathcal{M}_{g}^{ \pm}$is generated by three symmetries.

Proof. As observed in the introduction, the result is well known for $g=1$, but for the sake of completeness let us prove this in more geometric way. Since $\mathcal{M}_{1}=\left\langle U_{1}, C_{1}\right\rangle$ (Fig. 1) and $\tau U_{1} \tau=U_{1}^{-1}, \tau C_{1} \tau=C_{1}^{-1}$, the group $\mathcal{M}_{1}^{ \pm}$ is generated by the symmetries $\tau, \tau U_{1}, \tau C_{1}$.

Now suppose that $g \geqslant 2$. Let ε_{1} and $\varepsilon_{2}=\varepsilon_{1} M$ be the symmetries defined above. Since $\varepsilon_{1}\left(t_{g-1}\right)=t_{g-1}^{-1}$ we have $\varepsilon_{1} C_{g-1} \varepsilon_{1}=C_{g-1}^{-1}$, i.e., $\varepsilon_{3}=\varepsilon_{1} C_{g-1}$ is a symmetry. In particular $\left\langle\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\rangle \supset\left\langle\varepsilon_{1} \varepsilon_{2}, \varepsilon_{1} \varepsilon_{3}\right\rangle=\left\langle M, C_{g-1}\right\rangle$. But by [7] the latter group is equal to \mathcal{M}_{g}. Since $\left\langle\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\rangle$ contains orientation reversing element, this proves that $\left\langle\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\rangle=\mathcal{M}_{g}^{ \pm}$.

Acknowledgement

The author wishes to thank the referee for his/her helpful suggestions.

References

[1] J. Birman, Automorphisms of the fundamental group of a closed, orientable 2-manifold, Proc. Amer. Math. Soc. 21 (1969) $351-354$.
[2] J. Birman, H. Hilden, On mapping class groups of closed surfaces as covering spaces, in: Advances in the Theory of Riemann Surfaces, in: Ann. of Math. Stud., vol. 66, Princeton University Press, Princeton, NJ, 1971, pp. 81-115.
[3] T. Brendle, B. Farb, Every mapping class group is generated by 3 torsion elements and by 7 involutions, Preprint 2003.
[4] G. Gromadzki, M. Stukow, Involving symmetries of Riemann surfaces to a study of the mapping class group, Publ. Mat., in press.
[5] S. Humphries, Generators for the mapping class group, in: Topology of Low-Dimensional Manifolds, in: Lecture Notes in Math., vol. 722, Springer, 1979, pp. 44-47.
[6] S. Kerckhoff, The Nielsen realization problem, Ann. of Math. 117 (1983) 235-265.
[7] M. Korkmaz, Generating the surface mapping class group by two elements, Preprint, 2003.
[8] C. Maclachlan, Modulus space is simply-connected, Proc. Amer. Math. Soc. 29 (1971) 85-86.
[9] W. Magnus, A. Karass, D. Solitar, Combinatorial Group Theory, Interscience, New York, 1966.
[10] J. McCarthy, A. Papadopoulos, Involutions in surface mapping class groups, Enseign. Math. 33 (1987) 275-290.
[11] B. Wajnryb, Mapping class group of a surface is generated by two elements, Topology 35 (1996) 377-383.
[12] A. Wiman, Über die hyperelliptischen Kurven und diejenigen vom Geschlecht $p=3$, welche eindeutige Transformationen in sich zulassen, Bihang Till. Kongl. Svenska Vetenskaps-Akademiens Handl. 21 (1895) 1-23.

[^0]: E-mail address: trojkat@math.univ.gda.pl (M. Stukow).
 ${ }^{1}$ Supported by BW 5100-5-0080-3.

