

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 338 (2004) 545-548

Partial Differential Equations/Mathematical Physics

From classical to semiclassical non-trapping behaviour

Thierry Jecko

IRMAR, Université de Rennes I, campus Beaulieu, 35042 Rennes cedex, France Received 27 October 2003; accepted after revision 27 January 2004

Presented by Gilles Lebeau

Abstract

For the semiclassical Schrödinger operator with smooth long-range potential, we prove in a new way, making use of semiclassical measures, that the boundary values of its resolvent at non-trapping energies are bounded by O(1/h), *h* being the semiclassical parameter. *To cite this article: T. Jecko, C. R. Acad. Sci. Paris, Ser. I 338 (2004).* © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Non-capture : du classique au semi-classique. Pour l'opérateur de Schrödinger semi-classique avec potentiel lisse à longue portée, on montre d'une manière nouvelle, au moyen de mesures semi-classiques, que les valeurs au bord de sa résolvante aux énergies non-captives sont de taille O(1/h), où *h* est le paramètre semi-classique. *Pour citer cet article : T. Jecko, C. R. Acad. Sci. Paris, Ser. I 338 (2004).*

© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Concerning the Schrödinger operator with smooth long-range potential, it is well known that the boundary values of the resolvent at positive energies exist (cf. [2]). At the semiclassical level with respect to Planck's constant *h*, it is known that these boundary values at energy $\lambda > 0$ are $O(h^{-1})$ if and only if λ is non-trapping for the associated classical flow. While the necessity of the non-trapping condition was proved in [9], the bound $O(h^{-1})$ for the boundary values of the resolvent was derived from the non-trapping condition in [7,5] using a semiclassical version of Mourre's commutator method and in [8] (in greater generality) using a semiclassical Mourre estimate. For the latter result, an alternative approach was introduced by Burq in [1], in a general setting, but for compactly supported pertubation of the Laplacian. Our purpose here is to adapt Burq's approach for smooth long-range potentials.

Our main motivation concerns the corresponding result for matricial operators, for which there are difficulties to apply Mourre's theory. It is thus interesting to investigate another strategy in a simple and close framework. We

E-mail address: thierry.jecko@univ-rennes1.fr (T. Jecko).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2004.01.022

also think it is useful to present a rather short and elementary proof, based on pseudodifferential calculus together with the use of semiclassical measures.

Let us now introduce some notation and the result. We denote by $\|\cdot\|$ and $\langle\cdot,\cdot\rangle$ the natural norm and scalar product, respectively, in $L^2(\mathbb{R}^d; \mathbb{C})$ with $d \ge 1$ and by Δ_x the Laplacian in \mathbb{R}^d . Let $V \in C^{\infty}(\mathbb{R}^d; \mathbb{R})$, satisfying, for some $\rho > 0$,

$$\forall \alpha \in \mathbb{N}^d, \ \forall x \in \mathbb{R}^d, \quad \left| \partial_x^{\alpha} V(x) \right| = \mathcal{O}_{\alpha} \left(\langle x \rangle^{-\rho - |\alpha|} \right), \tag{1}$$

where $\langle x \rangle = (1 + |x|^2)^{1/2}$. Let $h \in [0; h_0]$, for some $h_0 > 0$. The semiclassical Schrödinger operator with smooth, long-range potential is given by $P_h := -h^2 \Delta_x + V(x)$, acting in $L^2(\mathbb{R}^d; \mathbb{C})$. It is well known that P_h is selfadjoint on the domain D of the Laplacian (see [2]). Denoting its resolvent by $R(z) := (P_h - z)^{-1}$, with z in the resolvent set of P_h , we know from [2] that it has boundary values $R(\lambda \pm i0)$, for $\lambda \in [0; +\infty[$, as bounded operators from $L_s^2(\mathbb{R}^d; \mathbb{C})$ to $L_{-s}^2(\mathbb{R}^d; \mathbb{C})$, for s > 1/2. Here $L_s^2(\mathbb{R}^d; \mathbb{C})$ denotes the weighted L^2 space of mesurable, \mathbb{C} -valued functions f on \mathbb{R}^d such that $x \mapsto \langle x \rangle^s f(x)$ belongs to $L^2(\mathbb{R}^d; \mathbb{C})$. We denote by $p(x, \xi) := |\xi|^2 + V(x)$, $(x, \xi) \in T^* \mathbb{R}^d$, the symbol of P_h and by ϕ^t the associated Hamilton flow on $T^* \mathbb{R}^d$. An energy λ is non-trapping for p if

$$\forall (x,\xi) \in p^{-1}(\lambda), \quad \lim_{t \to -\infty} \left| \phi^t(x,\xi) \right| = +\infty \quad \text{and} \quad \lim_{t \to +\infty} \left| \phi^t(x,\xi) \right| = +\infty.$$
(2)

Our goal is to give a new proof of the following result, already obtained in [7,5,8].

Theorem 1.1. Under the previous assumptions, let $I \subset]0; +\infty[$ be a compact interval of non-trapping energies for p. Then, for small enough h_0 and any s > 1/2, there exists $C_s > 0$ such that, uniformly for $\lambda \in I$ and $h \in]0; h_0]$,

$$\left\|\langle x\rangle^{-s}R(\lambda\pm i0)\langle x\rangle^{-s}\right\| \leqslant C_s h^{-1}.$$
(3)

2. Proof of Theorem 1.1: semiclassical trapping

Without assuming the non-trapping condition, we first study the situation, called semiclassical trapping, for which (3) is false. Then we show that this semiclassical trapping contradicts the non-trapping condition (2), yielding a proof of Theorem 1.1 by contradiction. The situation here is similar to that in [1], the strategy of which we follow. However, new ingredients and new results appear in the present Note.

Possibly after extraction of subsequences, the negation of (3) for some s > 1/2 and for $R(\lambda + i0)$ implies the existence of sequences $(h_n)_n \in]0; h_0]^{\mathbb{N}}$ tending to zero, $(f_n)_n$ of nonzero functions of the domain D, and $(z_n)_n \in \mathbb{C}^{\mathbb{N}}$ with $\Re(z_n) \to \lambda > 0$ and $0 \leq \Im(z_n)/h_n \to r \geq 0$, such that $\|\langle x \rangle^{-s} f_n\| = 1$ and $\|\langle x \rangle^s (P_{h_n} - z_n) f_n\| =$ $o(h_n)$. We can also assume that the previous bounded sequence $(\langle x \rangle^{-s} f_n)_n$ in L^2 is pure and we denote by μ_s its semiclassical measure. It is a finite, non-negative Radon measure on $T^* \mathbb{R}^d$, satisfying, for any $a \in C_0^{\infty}(T^* \mathbb{R}^d)$,

$$\lim_{n \to \infty} \langle a_{h_n}^w \langle x \rangle^{-s} f_n, \langle x \rangle^{-s} f_n \rangle = \int_{T^* \mathbb{R}^d} a(x, \xi) \, \mu_s(\mathrm{d}x \, \mathrm{d}\xi) =: \mu_s(a).$$
(4)

Here a_h^w the Weyl *h*-quantization of the symbol *a*. Let us mention that we shall use at many places well known properties of semiclassical measures, of the Weyl *h*-pseudodifferential calculus, and of the functional calculus of Helffer–Sjöstrand. For details, we refer to [3,4,6].

Take $a \in C_0^{\infty}(T^*\mathbb{R}^d)$ with support disjoint from $p^{-1}(\lambda)$, the sequence $a\langle x \rangle^{-2s}(p-z_n)^{-1} \in C_0^{\infty}(T^*\mathbb{R}^d)$ is bounded, since $\Re(z_n) \to \lambda$. Therefore $\langle a_{h_n}^w \langle x \rangle^{-s} f_n, \langle x \rangle^{-s} f_n \rangle$ tends to 0 as $n \to \infty$, since $\|\langle x \rangle^s (P_{h_n} - z_n) f_n\| = o(h_n)$. This means that μ_s is supported in $p^{-1}(\lambda)$.

According to [1], we expect that the Poisson bracket (in the distributional sense) $\{p, \langle x \rangle^{2s} \mu_s\}$ equals $r \langle x \rangle^{2s} \mu_s$. But it turns out that r = 0 in our case. Indeed,

546

$$o(h_n) = \langle \langle x \rangle^s (P_{h_n} - z_n) f_n, \langle x \rangle^{-s} f_n \rangle = \langle (P_{h_n} - z_n) f_n, f_n \rangle = \langle f_n, (P_{h_n} - \overline{z_n}) f_n \rangle$$
$$= \langle f_n, (P_{h_n} - z_n) f_n \rangle + \langle f_n, 2i\Im(z_n) f_n \rangle = o(h_n) + \langle f_n, 2i\Im(z_n) f_n \rangle,$$

yielding $||f_n||^2 \Im(z_n)/h_n = o(1)$. If $\lim \Im(z_n)/h_n = r \neq 0$ then $||f_n||^2 \to 0$. Since $s \ge 0, 1 = ||\langle x \rangle^{-s} f_n||^2 \le ||f_n||^2$. We arrive at a contradiction. Therefore r = 0 and we get the following result.

Proposition 2.1. The measure $\langle x \rangle^{2s} \mu_s$ is invariant under ϕ^t , that is $\{p, \langle x \rangle^{2s} \mu_s\} = 0$.

Proof. We follow [1]. For any $a \in C_0^{\infty}(T^*\mathbb{R}^d)$,

Looking for other properties of μ_s , we learn from [4] that, if

$$\lim_{R \to +\infty} \limsup_{n \to \infty} \int_{|x| > R} \langle x \rangle^{-2s} f_n^2 \, \mathrm{d}x = 0, \tag{6}$$

then the total mass of μ_s equals $\lim_{n\to\infty} ||\langle x \rangle^{-s} f_n||^2$. In particular, μ_s is nonzero. From (1), we see that there exists c > 0 such that $\{p, x \cdot \xi\} \ge c$ on $p^{-1}(\lambda)$, for |x| large enough. 'Quantizing' this fact carefully, in a similar way as in [8], we shall show a stronger version of (6), namely (10).

Let R > 0 and let $\mathbb{1}_{\{|x|>R\}}$ be the characteristic function of the set $\{(x,\xi) \in T^*\mathbb{R}^d; |x|>R\} =: T^*\mathbb{R}^d \setminus B_R^*$. Let $\chi_0 \in C_0^{\infty}(\mathbb{R}; \mathbb{R})$ such that $0 \leq \chi_0 \leq 1$, $\chi_0 = 0$ on $]-\infty; 1/3[$, and $\chi_0 = 1$ on $]2/3; +\infty[$. For R large enough and any $\delta \in]0; \min(1; \rho)[$, where ρ appeared in (1), we can define, near $p^{-1}(\lambda) \setminus B_R^*$, the symbol $a_{\infty}(x,\xi) := \hat{x} \cdot \hat{\xi} - |x|^{-\delta}(\chi_0(\hat{x} \cdot \hat{\xi}) - \chi_0(-\hat{x} \cdot \hat{\xi}))$, where $\hat{x} := x/|x|$. It is easy to show that, near $p^{-1}(\lambda) \setminus B_R^*$, a_{∞} is a smooth, bounded function such that, for m = 0,

$$\forall (\alpha, \beta) \in \mathbb{N}^{2d}, \ \exists C_{\alpha\beta} > 0; \ \forall (x, \xi) \in p^{-1}(\lambda) \setminus B_R^*, \quad \left| \partial_x^{\alpha} \partial_{\xi}^{\beta} a_{\infty}(x, \xi) \right| \leqslant C_{\alpha\beta} \langle x \rangle^{-m - |\alpha|}.$$
(7)

Let $\tau \in C_0^{\infty}(\mathbb{R}; \mathbb{R})$ with $0 \leq \tau \leq 1$, $\tau = 1$ on [-R; R], supp $\tau \subset [-R - 1; R + 1]$, and let $\chi(x) := \tau(|x|)$. For R large enough, there is, thanks to (1), some c > 0 such that $\{p, a_{\infty}\} \ge 2c\langle x \rangle^{-1-\delta}$ and $\{p, (1-\chi)^2\}a_{\infty} \ge 0$ near $p^{-1}(\lambda) \setminus B_R^*$. Let $\theta \in C_0^{\infty}(\mathbb{R}; \mathbb{R}^+)$ with support sufficiently close to λ . By the Gårding inequality (cf. [3]),

$$\theta(P_{h_n})\big(\big\{p,(1-\chi)^2\big\}a_\infty\big)_{h_n}^w\theta(P_{h_n}) \ge \langle x \rangle^{-m}\theta(P_{h_n})\widetilde{O}(h_n)\theta(P_{h_n})\langle x \rangle^{-m},\tag{8}$$

for any $m \in \mathbb{N}$, where $O_m(h_n)$ denotes a bounded operator, the norm of which is $O_m(h_n)$. By the *h*-pseudodifferential calculus, for symbols satisfying (7) with m = 1,

$$\theta(P_{h_n})(1-\chi) \{p, a_{\infty}\}_{h_n}^w (1-\chi)\theta(P_{h_n}) \ge c \langle x \rangle^{-(1+\delta)/2} \theta(P_{h_n})(1-\chi)^2 \theta(P_{h_n}) \langle x \rangle^{-(1+\delta)/2} + \langle x \rangle^{-1} \theta(P_{h_n}) \widetilde{O}(h_n)\theta(P_{h_n}) \langle x \rangle^{-1}.$$
(9)

Since $ih_n^{-1}[P_{h_n}, ((1-\chi)^2 a_\infty)_{h_n}^w] = \{p, (1-\chi)^2 a_\infty\}_{h_n}^w + \langle x \rangle^{-1} \widetilde{O}(h_n) \langle x \rangle^{-1} \text{ and } \| \widetilde{\chi} \theta(P_{h_n}) \langle x \rangle^{s-1} \langle x \rangle^{-s} f_n \| = O(1)$ for $\widetilde{\chi} \in C_0^\infty(\mathbb{R}^d)$, we obtain, using $\delta \leq 1$, (8), and (9),

$$\left\langle ih_{n}^{-1} \left[P_{h_{n}}, \left((1-\chi)^{2} a_{\infty} \right)_{h_{n}}^{w} \right] \theta(P_{h_{n}}) f_{n}, \theta(P_{h_{n}}) f_{n} \right\rangle \ge (c/2) \left\| (1-\chi) \theta(P_{h_{n}}) \langle x \rangle^{-(1+\delta)/2} f_{n} \right\|^{2} + \mathcal{O}(h_{n}).$$

Since a_{∞} is a bounded symbol, the l.h.s. of the last inequality tends to zero as in (5), yielding

$$\lim_{n \to \infty} \|\mathbb{1}_{\{|x| > R\}} \theta(P_{h_n}) \langle x \rangle^{-(1+\delta)/2} f_n \|^2 = 0.$$
(10)

547

Notice that this and the energy localization of the f_n show that $(\langle x \rangle^{-(1+\delta)/2} f_n)_n$ is bounded in L². It is also pure and its semiclassical measure $\mu_{(1+\delta)/2}$ satisfies, for $a \in C_0^{\infty}(T^*\mathbb{R}^d)$, $\mu_{(1+\delta)/2}(a) = \mu_s(\langle x \rangle^{2s-1-\delta}a)$. The limit (10) implies that $\mu_{(1+\delta)/2}$ is supported in B_R^* . Thus μ_s have compact support included in $p^{-1}(\lambda) \cap B_R^*$ and (6) holds true for the sequence $(\langle x \rangle^{-(1+\delta)/2} f_n)_n$. Therefore, this sequence converges to the total mass of $\mu_{(1+\delta)/2}$. Since s > 1/2, we can choose $\delta \leq s$, yielding $||\langle x \rangle^{-(1+\delta)/2} f_n||^2 \geq ||\langle x \rangle^{-s} f_n||^2 = 1$, for all *n*. This shows that μ_s is nonzero.

Now, assume that λ is a non-trapping energy. Since μ_s has compact support in $p^{-1}(\lambda) \cap B_R^*$, we can find $g \in C_0^{\infty}(T^*\mathbb{R}^d)$ with g = 1 on $p^{-1}(\lambda) \cap B_R^*$. By the non-trapping condition (2), $a(x,\xi) := -\int_0^{+\infty} g \circ \phi^t(x,\xi) dt$ is a well-defined, smooth function near $p^{-1}(\lambda)$ such that $\{p, a\} = g$. Since μ_s has compact support, $\mu_s(\langle x \rangle^{2s}) = \mu_s(\langle x \rangle^{2s} \{p, a\}) = 0$, by Proposition 2.1, leading to a contradiction. This ends the proof of Theorem 1.1.

What would happen, if $s \leq 1/2$? If λ is non-trapping, $\mu_s = 0$ and the previous arguments show that $\lim_{n\to\infty} ||\langle x \rangle^{-(1+\delta)/2} f_n||^2 = 0$ which does not contradict a priori $||\langle x \rangle^{-s} f_n|| = 1$. This appears for V = 0, for which each $\lambda > 0$ is non-trapping, and for $s \in [0; 1/2[: \text{given } k \in \mathbb{R}^d \setminus \{0\}, \chi \in C_0^{\infty}(]1; 2[; \mathbb{R}) \text{ with } \int_{\mathbb{R}} \chi^2 = 1$, and denoting by m_d the Lebesgue measure of the (d-1)-dimensional unit sphere, take

$$f_n(x) := \frac{1}{\sqrt{m_d}} \operatorname{e}^{\operatorname{i} h_n^{-1} k \cdot x} \langle x \rangle^s |x|^{(1-d)/2} \frac{1}{\sqrt{n}} \chi \big(|x|/n \big).$$

Acknowledgements

The author thanks M. Klein for hospitality at the university of Potsdam (Germany) and for fruitful discussions and advice.

References

- [1] N. Burq, Semiclassical estimates for the resolvent in non trapping geometries, Int. Math. Res. Notices 5 (2002) 221-241.
- [2] H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry, Springer-Verlag, 1987.
- [3] J. Dereziński, C. Gérard, Scattering Theory of Classical and Quantum N-Particle Systems, Springer-Verlag, 1997.
- [4] P. Gérard, E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J. 71 (2) (1993).
- [5] C. Gérard, A. Martinez, Principe d'absorption limite pour des opérateurs de Schrödinger à longue portée, C. R. Acad. Sci. Paris 306 (1988) 121–123.
- [6] D. Robert, Autour de l'approximation semi-classique, Birkhäuser, 1987.
- [7] D. Robert, H. Tamura, Semiclassical estimates for resolvents and asymptotics for total cross-section, Ann. Inst. H. Poincaré 46 (1987) 415–442.
- [8] A. Vasy, M. Zworski, Semiclassical estimates in asymptotically Euclidean scattering, Comm. Math. Phys. 212 (1) (2000) 205-217.
- [9] X.P. Wang, Semiclassical resolvent estimates for N-body Schrödinger operators, J. Funct. Anal. 97 (1991) 466-483.