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Abstract

For the semiclassical Schrödinger operator with smooth long-range potential, we prove in a new way, making
semiclassical measures, that the boundary values of its resolvent at non-trapping energies are bounded by O(1/h), h being
the semiclassical parameter.To cite this article: T. Jecko, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Non-capture : du classique au semi-classique. Pour l’opérateur de Schrödinger semi-classique avec potentiel lisse à lo
portée, on montre d’une manière nouvelle, au moyen de mesures semi-classiques, que les valeurs au bord de sa rés
énergies non-captives sont de taille O(1/h), oùh est le paramètre semi-classique.Pour citer cet article : T. Jecko, C. R. Acad.
Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Concerning the Schrödinger operator with smooth long-range potential, it is well known that the bo
values of the resolvent at positive energies exist (cf. [2]). At the semiclassical level with respect to P
constanth, it is known that these boundary values at energyλ > 0 are O(h−1) if and only if λ is non-trapping
for the associated classical flow. While the necessity of the non-trapping condition was proved in [9], the
O(h−1) for the boundary values of the resolvent was derived from the non-trapping condition in [7,5] u
semiclassical version of Mourre’s commutator method and in [8] (in greater generality) using a semic
Mourre estimate. For the latter result, an alternative approach was introduced by Burq in [1], in a general
but for compactly supported pertubation of the Laplacian. Our purpose here is to adapt Burq’s approach fo
long-range potentials.

Our main motivation concerns the corresponding result for matricial operators, for which there are diffi
to apply Mourre’s theory. It is thus interesting to investigate another strategy in a simple and close framew
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also think it is useful to present a rather short and elementary proof, based on pseudodifferential calculus
with the use of semiclassical measures.

Let us now introduce some notation and the result. We denote by‖ · ‖ and〈· , ·〉 the natural norm and scala
product, respectively, in L2(Rd ;C) with d � 1 and by	x the Laplacian inRd . Let V ∈ C∞(Rd;R), satisfying,
for someρ > 0,

∀α ∈N
d , ∀x ∈R

d,
∣∣∂αx V (x)

∣∣=Oα

(〈x〉−ρ−|α|), (1)

where〈x〉 = (1+ |x|2)1/2. Let h ∈]0;h0], for someh0 > 0. The semiclassical Schrödinger operator with smo
long-range potential is given byPh := −h2	x + V (x), acting in L2(Rd;C). It is well known thatPh is self-
adjoint on the domainD of the Laplacian (see [2]). Denoting its resolvent byR(z) := (Ph − z)−1, with z in the
resolvent set ofPh, we know from [2] that it has boundary valuesR(λ± i0), for λ ∈]0;+∞[, as bounded operato
from L2

s (R
d;C) to L2−s(Rd ;C), for s > 1/2. Here L2s (R

d;C) denotes the weighted L2 space of mesurable
C-valued functionsf onRd such thatx �→ 〈x〉sf (x) belongs to L2(Rd;C). We denote byp(x, ξ) := |ξ |2+V (x),
(x, ξ) ∈ T ∗Rd , the symbol ofPh and byφt the associated Hamilton flow onT ∗Rd . An energyλ is non-trapping
for p if

∀(x, ξ) ∈ p−1(λ), lim
t→−∞

∣∣φt(x, ξ)
∣∣=+∞ and lim

t→+∞
∣∣φt(x, ξ)

∣∣=+∞. (2)

Our goal is to give a new proof of the following result, already obtained in [7,5,8].

Theorem 1.1. Under the previous assumptions, let I ⊂]0;+∞[ be a compact interval of non-trapping energies
for p. Then, for small enough h0 and any s > 1/2, there exists Cs > 0 such that, uniformly for λ ∈ I and h ∈]0;h0],∥∥〈x〉−sR(λ± i0)〈x〉−s∥∥ � Csh

−1. (3)

2. Proof of Theorem 1.1: semiclassical trapping

Without assuming the non-trapping condition, we first study the situation, called semiclassical trapp
which (3) is false. Then we show that this semiclassical trapping contradicts the non-trapping condition (2), y
a proof of Theorem 1.1 by contradiction. The situation here is similar to that in [1], the strategy of which we
However, new ingredients and new results appear in the present Note.

Possibly after extraction of subsequences, the negation of (3) for somes > 1/2 and forR(λ + i0) implies
the existence of sequences(hn)n ∈]0;h0]N tending to zero,(fn)n of nonzero functions of the domainD, and
(zn)n ∈CN with �(zn)→ λ > 0 and 0� �(zn)/hn→ r � 0, such that‖〈x〉−sfn‖ = 1 and‖〈x〉s (Phn − zn)fn‖ =
o(hn). We can also assume that the previous bounded sequence(〈x〉−sfn)n in L2 is pure and we denote byµs its
semiclassical measure. It is a finite, non-negative Radon measure onT ∗Rd , satisfying, for anya ∈C∞0 (T ∗Rd),

lim
n→∞

〈
awhn〈x〉−sfn, 〈x〉−sfn

〉= ∫
T ∗Rd

a(x, ξ)µs(dx dξ)=: µs(a). (4)

Hereawh the Weylh-quantization of the symbola. Let us mention that we shall use at many places well kn
properties of semiclassical measures, of the Weylh-pseudodifferential calculus, and of the functional calculu
Helffer–Sjöstrand. For details, we refer to [3,4,6].

Take a ∈ C∞0 (T ∗Rd) with support disjoint fromp−1(λ), the sequencea〈x〉−2s(p − zn)
−1 ∈ C∞0 (T ∗Rd ) is

bounded, since�(zn)→ λ. Therefore〈awhn〈x〉−sfn, 〈x〉−sfn〉 tends to 0 asn→∞, since‖〈x〉s (Phn − zn)fn‖ =
o(hn). This means thatµs is supported inp−1(λ).

According to [1], we expect that the Poisson bracket (in the distributional sense){p, 〈x〉2sµs} equalsr〈x〉2sµs .
But it turns out thatr = 0 in our case. Indeed,
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re
ar
o(hn)=
〈〈x〉s (Phn − zn)fn, 〈x〉−sfn

〉= 〈
(Phn − zn)fn, fn

〉= 〈
fn, (Phn − zn)fn

〉
= 〈

fn, (Phn − zn)fn
〉+ 〈

fn,2i�(zn)fn
〉= o(hn)+

〈
fn,2i�(zn)fn

〉
,

yielding‖fn‖2�(zn)/hn = o(1). If lim �(zn)/hn = r �= 0 then‖fn‖2→ 0. Sinces � 0, 1= ‖〈x〉−sfn‖2 � ‖fn‖2.
We arrive at a contradiction. Thereforer = 0 and we get the following result.

Proposition 2.1. The measure 〈x〉2sµs is invariant under φt , that is {p, 〈x〉2sµs} = 0.

Proof. We follow [1]. For anya ∈C∞0 (T ∗Rd),〈
ih−1

n

[
Phn, a

w
hn

]
fn,fn

〉= 〈
ih−1

n awhnfn, (Phn − zn)fn
〉− 〈

ih−1
n awhn(Phn − zn)fn, fn

〉
= (

2�(zn)/hn
)〈
awhnfn, fn

〉+ o(1)= o(1), (5)〈
ih−1

n

[
Phn, a

w
hn

]
fn,fn

〉= 〈{p,a}whnfn, fn〉+O(hn)= µs

(〈x〉2s{p,a})+ o(1). ✷
Looking for other properties ofµs , we learn from [4] that, if

lim
R→+∞ lim sup

n→∞

∫
|x|>R

〈x〉−2sf 2
n dx = 0, (6)

then the total mass ofµs equals limn→∞ ‖〈x〉−sfn‖2. In particular,µs is nonzero. From (1), we see that the
existsc > 0 such that{p,x · ξ}� c onp−1(λ), for |x| large enough. ‘Quantizing’ this fact carefully, in a simil
way as in [8], we shall show a stronger version of (6), namely (10).

Let R > 0 and let1{|x|>R} be the characteristic function of the set{(x, ξ) ∈ T ∗Rd; |x| > R} =: T ∗Rd \ B∗R .
Let χ0 ∈ C∞0 (R;R) such that 0� χ0 � 1, χ0 = 0 on ]−∞;1/3[, and χ0 = 1 on ]2/3;+∞[. For R large
enough and anyδ ∈]0;min(1;ρ)[, whereρ appeared in (1), we can define, nearp−1(λ) \ B∗R , the symbol
a∞(x, ξ) := x̂ · ξ̂ − |x|−δ(χ0(x̂ · ξ̂ )−χ0(−x̂ · ξ̂ )), wherex̂ := x/|x|. It is easy to show that, nearp−1(λ) \B∗R , a∞
is a smooth, bounded function such that, form= 0,

∀(α,β) ∈N
2d, ∃Cαβ > 0; ∀(x, ξ) ∈ p−1(λ) \B∗R,

∣∣∂αx ∂βξ a∞(x, ξ)
∣∣ � Cαβ〈x〉−m−|α|. (7)

Let τ ∈ C∞0 (R;R) with 0 � τ � 1, τ = 1 on [−R;R], suppτ ⊂ [−R − 1;R + 1], and letχ(x) := τ (|x|). ForR
large enough, there is, thanks to (1), somec > 0 such that{p,a∞} � 2c〈x〉−1−δ and{p, (1− χ)2}a∞ � 0 near
p−1(λ) \B∗R . Let θ ∈C∞0 (R;R+) with support sufficiently close toλ. By the Gårding inequality (cf. [3]),

θ(Phn)
({
p, (1− χ)2

}
a∞

)w
hn
θ(Phn) � 〈x〉−m θ(Phn)Õ(hn)θ(Phn)〈x〉−m, (8)

for any m ∈ N, whereÕm(hn) denotes a bounded operator, the norm of which isOm(hn). By the h-pseudo-
differential calculus, for symbols satisfying (7) withm= 1,

θ(Phn)(1− χ)
{
p,a∞

}w
hn
(1− χ)θ(Phn) � c〈x〉−(1+δ)/2θ(Phn)(1− χ)2 θ(Phn) 〈x〉−(1+δ)/2

+ 〈x〉−1 θ(Phn)Õ(hn)θ(Phn)〈x〉−1. (9)

Since ih−1
n [Phn, ((1−χ)2a∞)whn ] = {p, (1−χ)2a∞}whn+〈x〉−1Õ(hn)〈x〉−1 and‖χ̃θ(Phn)〈x〉s−1 〈x〉−sfn‖ =O(1)

for χ̃ ∈ C∞0 (Rd), we obtain, usingδ � 1, (8), and (9),〈
ih−1

n

[
Phn,

(
(1− χ)2a∞

)w
hn

]
θ(Phn)fn, θ(Phn)fn

〉
� (c/2)

∥∥(1− χ) θ(Phn)〈x〉−(1+δ)/2fn
∥∥2+O(hn).

Sincea∞ is a bounded symbol, the l.h.s. of the last inequality tends to zero as in (5), yielding

lim
∥∥1{|x|>R}θ(Phn)〈x〉−(1+δ)/2fn

∥∥2= 0. (10)

n→∞
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Notice that this and the energy localization of thefn show that(〈x〉−(1+δ)/2fn)n is bounded in L2. It is also pure
and its semiclassical measureµ(1+δ)/2 satisfies, fora ∈ C∞0 (T ∗Rd), µ(1+δ)/2(a)= µs(〈x〉2s−1−δa). The limit (10)
implies thatµ(1+δ)/2 is supported inB∗R . Thusµs have compact support included inp−1(λ)∩B∗R and (6) holds true
for the sequence(〈x〉−(1+δ)/2fn)n. Therefore, this sequence converges to the total mass ofµ(1+δ)/2. Sinces > 1/2,
we can chooseδ � s, yielding‖〈x〉−(1+δ)/2fn‖2 � ‖〈x〉−sfn‖2= 1, for all n. This shows thatµs is nonzero.

Now, assume thatλ is a non-trapping energy. Sinceµs has compact support inp−1(λ) ∩ B∗R , we can find
g ∈ C∞0 (T ∗Rd ) with g = 1 onp−1(λ) ∩B∗R . By the non-trapping condition (2),a(x, ξ) := − ∫ +∞

0 g ◦ φt (x, ξ)dt
is a well-defined, smooth function nearp−1(λ) such that{p,a} = g. Sinceµs has compact support,µs(〈x〉2s )=
µs(〈x〉2s{p,a})= 0, by Proposition 2.1, leading to a contradiction. This ends the proof of Theorem 1.1.

What would happen, ifs � 1/2? If λ is non-trapping,µs = 0 and the previous arguments show t
limn→∞ ‖〈x〉−(1+δ)/2fn‖2 = 0 which does not contradict a priori‖〈x〉−sfn‖ = 1. This appears forV = 0, for
which eachλ > 0 is non-trapping, and fors ∈ [0;1/2[ : givenk ∈Rd \ {0}, χ ∈C∞0 (]1;2[;R) with

∫
R
χ2= 1, and

denoting bymd the Lebesgue measure of the(d − 1)-dimensional unit sphere, take

fn(x) := 1√
md

eih−1
n k·x〈x〉s |x|(1−d)/2 1√

n
χ

(|x|/n)
.
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