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Abstract

For the semiclassical Schrédinger operator with smooth long-range potential, we prove in a new way, making use of
semiclassical measures, that the boundary values of its resolvent at non-trapping energies are boutiét) by Being
the semiclassical paramet@a cite thisarticle: T. Jecko, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Non-capture: du classique au semi-classique. Pour I'opérateur de Schrédinger semi-classique avec potentiel lisse a longue
portée, on montre d’une maniére nouvelle, au moyen de mesures semi-classiques, que les valeurs au bord de sa résolvante ¢
énergies non-captives sont de taill€lph), ou i est le parametre semi-classig&eur citer cet article: T. Jecko, C. R. Acad.
Sci. Paris, Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Concerning the Schrddinger operator with smooth long-range potential, it is well known that the boundary
values of the resolvent at positive energies exist (cf. [2]). At the semiclassical level with respect to Planck’s
constants, it is known that these boundary values at enexgy 0 are Q1) if and only if A is non-trapping
for the associated classical flow. While the necessity of the non-trapping condition was proved in [9], the bound
O(h~1) for the boundary values of the resolvent was derived from the non-trapping condition in [7,5] using a
semiclassical version of Mourre’s commutator method and in [8] (in greater generality) using a semiclassical
Mourre estimate. For the latter result, an alternative approach was introduced by Burq in [1], in a general setting,
but for compactly supported pertubation of the Laplacian. Our purpose here is to adapt Burg’s approach for smooth
long-range potentials.

Our main motivation concerns the corresponding result for matricial operators, for which there are difficulties
to apply Mourre’s theory. It is thus interesting to investigate another strategy in a simple and close framework. We
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also think it is useful to present a rather short and elementary proof, based on pseudodifferential calculus togethe
with the use of semiclassical measures.

Let us now introduce some notation and the result. We denote-Hlyand (-, -) the natural norm and scalar
product, respectively, in4(R¢; C) with 4 > 1 and byA, the Laplacian inR?. Let V e C*®(R?; R), satisfying,
for somep > 0,

Va e N?, Vx e RY, 32V (x)| = Oy ((x) 771, 1)

where(x) = (1+ |x|?) /2. Leth €10; hol, for somehg > 0. The semiclassical Schrédinger operator with smooth,
long-range potential is given by, := —h?A, + V(x), acting in 2(R%; C). It is well known thatP, is self-
adjoint on the domaitD of the Laplacian (see [2]). Denoting its resolvent Ryz) := (P, — z) 1, with z in the
resolvent set oP;,, we know from [2] that it has boundary valuggi £ i0), for A € ]10; +o0[, as bounded operators
from L2(R¢; C) to L2 (R?; C), for s > 1/2. Here [(R¢; C) denotes the weighted?Lspace of mesurable,
C-valued functionsf onRR¢ such thatr — (x)* f(x) belongs to B(R?; C). We denote by (x, £) := ]2+ V (x),
(x,&) e T*R4, the symbol ofP, and by’ the associated Hamilton flow di*R?. An energy is non-trapping
for p if

V&) ep i), lim [¢'(n6)]=+o0 and  lim [¢' (x, £)] = +oo. 2

Our goal is to give a new proof of the following result, already obtained in [7,5,8].

Theorem 1.1. Under the previous assumptions, let I C ]0; +oo[ be a compact interval of non-trapping energies
for p. Then, for small enough hg andany s > 1/2, thereexists Cy > 0 such that, uniformlyfor A € I and i €]0; hg],

[ ) R £i0) (x)™* | < Coh ™. (3)

2. Proof of Theorem 1.1: semiclassical trapping

Without assuming the non-trapping condition, we first study the situation, called semiclassical trapping, for
which (3) is false. Then we show that this semiclassical trapping contradicts the non-trapping condition (2), yielding
a proof of Theorem 1.1 by contradiction. The situation here is similar to that in [1], the strategy of which we follow.
However, new ingredients and new results appear in the present Note.

Possibly after extraction of subsequences, the negation of (3) for som#&/2 and for R(A + i0) implies
the existence of sequencés,), €10; hol" tending to zero( f,), of nonzero functions of the domaif, and
(zn)n € CN with %(z,) — A > 0 and 0< I(zn)/ hn — r = 0, such that|(x)~* £, || = 1 and|| (x)(Pn, — zn) full =
o(h,). We can also assume that the previous bounded seq@éncé f,,), in L2 is pure and we denote hy; its
semiclassical measure. It is a finite, non-negative Radon measur&Rsh satisfying, for any: e Cgo(T*Rd),

(@ ()™ fu (1) fu) = / a(x, &) ps(dx d8) =: g1 (a). (4)

T*R4

lim
n—0o0

Herea;’ the Weylh-quantization of the symbal. Let us mention that we shall use at many places well known
properties of semiclassical measures, of the Vilepseudodifferential calculus, and of the functional calculus of
Helffer-Sjostrand. For details, we refer to [3,4,6].

Takea e C3°(T*R?) with support disjoint fromp=1(1), the sequence (x)~%(p — z,)~1 € CF(T*RY) is
bounded, sinc&i(z,) — A. Therefore(a;fn ()75 fu, (x)7F fn) tends to 0 as — oo, since||{(x)*(Pn, — zn) fnll =
o(h,). This means that, is supported ipp~1(1).

According to [1], we expect that the Poisson bracket (in the distributional semsg))® 1, } equals- (x)% 1.

But it turns out that = 0 in our case. Indeed,
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o(hy,) = <(x>S(Ph,1 - Zn)fm (x>_sfn> = ((Phn - Zn)fm fn) = <fn7 (Phn - Z_n)fn>
= <fn7 (Pn, — Zn)fn) + (fn, 2i3(1n)fn> =0(hn) + (f}’h ZiS(Zn)fn>v
yielding || £ 1°3(zn)/ hn = 0(1). If im (z4)/ h = r # 0 then|l £, — 0. Sinces > 0, 1= (x)™* fu|* < Il full*.
We arrive at a contradiction. Therefore= 0 and we get the following result.
Proposition 2.1. The measure (x)% u, isinvariant under ¢', that is {p, (x)% us} = 0.

Proof. We follow [1]. For anya € C$°(T*R9),

(i, [ Pays @l ] oo f) = (ki all fors (P, = Z0) fu) = (18 2 (Pay — 20) fros f)
= (23(zn)/ hu )@y, fu, fa) +0(1) = 0(D), (5)
(ih;l[Phn, a}fil]f,,, fn) = <{P, a}z;fnv fn) +O(hy,) = M;((x)zs{p, a}) +0(1). O

Looking for other properties gi,, we learn from [4] that, if

lim limsup / (x)”% f2dx =0, (6)
R—+00 p—oo
|x|>R

then the total mass qf, equals lim_ o ||(x)~* f,|I2. In particular,u, is nonzero. From (1), we see that there
existsc > 0 such thafp, x - £} > ¢ on p~1(%), for |x| large enough. ‘Quantizing’ this fact carefully, in a similar
way as in [8], we shall show a stronger version of (6), namely (10).

Let R > 0 and letl, - gy be the characteristic function of the dét,&) € T*R%; |x| > R} =: T*R? \ Bj.
Let xo € C3°(R; R) such that 0< xo < 1, xo = 0 on ]—o0; 1/3[, and xo = 1 on ]2/3; +-o0[. For R large
enough and any € 10; min(1; p)[, where p appeared in (1), we can define, near'(1) \ B%, the symbol
Aoo(x, ) =% & — |x| P (x0(% - &) — xo(—% - £)), wherex := x/|x|. Itis easy to show that, near1(1) \ B, aso
is a smooth, bounded function such that, fo& 0,

V(@ B) € N?, 3Cup > 0: ¥(x.&) € p2() \ By, [090 aco(x. £)] < Capfx) ™1, (7)

Lett e CP(R; R) with 0< 7 <1,z =10n[—R; R], suppr C [-R — 1; R+ 1], and lety (x) := t(|x|). For R
large enough, there is, thanks to (1), some 0 such that{p, as} > 2¢(x) 1% and{p, (1 — x)%}as > 0 near
0\ Bj. Letd € C3°(R; R1) with support sufficiently close ta. By the Gérding inequality (cf. [3]),

0(Pi,)({p. (L= x)*}aco), 0(Pr,) = (x) ™" 0(Py,) O ()0 (Py,) (x) ™", (8)

for any m € N, where 5m(h,,) denotes a bounded operator, the norm of whicl®js(s,). By the h-pseudo-
differential calculus, for symbols satisfying (7) with= 1,

0(Ph,)(L—0{p acc}y (L= x)0(Ps,) > cx)”HD20(Py, ) (L= x)?0(Py,) (x) /2
+ (X)L O(Pn,) O (hn)O(Pp,) (x) L 9)
since i Y[ Ph,. (1= x)2a00) 1= {p. (1= X)2aco}. + (x) 720 () (x) " and | 70 (Py,) (x)* 7 (x) = full = O(D)
for 3 € Cg°(R?), we obtain, using < 1, (8), and (9),
(i [P, (L= x)%acc);. 10 (P, fur O(Ph) f) = (/) (L= x) 0(Po, ) (x)"EFD/2, |2 + OCha).
Sincea is a bounded symbol, the I.h.s. of the last inequality tends to zero as in (5), yielding

| L1 )8 (i) )~ H72 1, |2 = 0. (10)

lim
n—0o0
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Notice that this and the energy localization of theshow that((x)~1+9/2 £,), is bounded in B. It is also pure
and its semiclassical measurtg,5)/2 satisfies, for € CS°(T*RY), w(1+5)2(a) = 115 ((x)*~17%a). The limit (10)
implies thatu (145)/2 is supported inBy . Thusy, have compact support includedpm(x) N B}y and (6) holds true
for the sequencgx)~1+9/2 £, Therefore, this sequence converges to the total masg of) 2. Sinces > 1/2,
we can choosé < s, yielding || (x)~@*9/2 £, 12 > ||(x)~* f,||% = 1, for all n. This shows tha, is nonzero.

Now, assume that is a non-trapping energy. Singe, has compact support ip~1(1) N B%, we can find
g € C°(T*RY) with g = 1 on p~1(1) N B};. By the non-trapping condition (2(x, &) := — ;" g 0 ¢’ (x, &) dr
is a well-defined, smooth function near(x) such that{p, a} = g. Sinceu, has compact support, ((x)%) =
ws ((x)%{p, a}) =0, by Proposition 2.1, leading to a contradiction. This ends the proof of Theorem 1.1.

What would happen, ifs < 1/2? If A is non-trapping,u; = 0 and the previous arguments show that
lim— 00 || (x)~1+9/2 £,112 = 0 which does not contradict a priolix)~ f,|| = 1. This appears fo¥’ = 0, for
which eacht > 0 is non-trapping, and fore [0; 1/2[ : givenk € R? \ {0}, x € C5°(11; 2[; R) with J x* =1, and
denoting bym, the Lebesgue measure of taie— 1)-dimensional unit sphere, take

1 - 1
) i — e @ ) e V2 ),
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