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Abstract

The asymptotic behavior of the logarithm of the density of someT-martingales (in the sense of Kahane theory (Chin
Ann. Math. Ser. B 8 (1) (1987) 1–12)) is described in detail even in absence of statistical self-similarity. Poisson in
of the form Lebesgue⊗ µ on R × R

∗+ are involved in the construction of these martingales. We prove that there are

possible behaviors according to the fact thatᾱ = limsupε→0(− logε)−1 ∫
[ε,1) �dµ(�) is zero, positive and finite, or infinite

This problem is closely related to the asymptotic behaviors of covering numbers in Poisson covering of the line and D
covering of the circle.To cite this article: J. Barral, A. Fan, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Densités de certaines T-martingales poissonniennes et nombres de recouvrements aléatoires. Le comportement asymp
totique du logarithme de la densité de certainesT-martingales (au sens de la théorie de Kahane (Chinese Ann. Math. S
8 (1) (1987) 1–12)) est décrit de façon précise même en l’absence d’auto-similarité en loi. La construction de ces ma
fait intervenir des intensités de Poisson de la forme Lebesgue⊗µ surR × R

∗+. Nous montrons qu’il y a trois comportemen

possibles selon quēα = limsupε→0(− logε)−1 ∫
[ε,1) �dµ(�) est nul, strictement positif et fini ou infini. Cette question est i

mement liée au comportements asymptotiques des nombres de recouvrements dans le recouvrement de Poisson pou
le recouvrement de Dvoretzky pour le cercle.Pour citer cet article : J. Barral, A. Fan, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Constructions of T-martingales

Let T be a locally compact metric space and(Ω,F ,P) be a probability space. Let
({Qε}, {Fε}

)
0<ε�1 be a

T-martingale in the sense that the filtration{Fε}0<ε�1 is nonincreasing,Qε : T ×Ω → R+ areT ⊗F -measurable
and
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(
Qε′(t)|Fε

) =Qε(t) (t ∈ T, 0< ε′ � ε � 1).

We suppose thatQε(t) andQε(t
′) have the same probability distribution.

Such martingales appeared as densities of random measures considered by Mandelbrot and Kaha
9,10] and in subsequent works. All these works consider the vague limitQσ of Qεσ as ε → 0, whereσ is
a Radon measure onT. One of the main problems is to determine the local dimension ofQσ , defined by
d(Qσ, t) = lim inf r→0

logQσ(B(t,r))
logr . Under some conditions of statistical self-similarity ofQσ , the multifractal

analysis ofQσ concerning the level sets ofd(Qσ, t) was performed [8,12,2,5] andd(Qσ, t) was linked, via the
knowledge on the distribution ofQσ , to the asymptotic density

DQ(t)= lim inf
r→0

logQε(t)

E logQε(t)
.

Without self-similarity ofQσ there is no answer to the problem of multifractality ofQσ . We propose to directly
study the natural asymptotic densityDQ(t). In this Note, we focus on two constructions.

Poissonian products of functions.They were introduced and studied in [5,3,6], also in [7] for a special case
ν = λ⊗µ, whereλ is the Lebesgue measure onR andµ is a locally finite Borel measure on(0,1].

Let (Bk)k�1 be a partition ofR × (0,1] into Borel sets such that 0< ν(Bk) <∞. Let ν|Bk denote the restriction
of ν on Bk and choose a sequence(M(k,n))n�1 of Bk-valued random variables with common distributi
ν(Bk)

−1ν|Bk . Also choose a sequence(Nk)k�1 of Poisson random variables with parameterν(Bk). Assume that al
the previous random variables are mutually independent. The setS = ⋃

k�1{M(k,1), . . . ,M(k,Nk)} is a Poisson
point process with intensityν. Let φ be a Hölder continuous positive function defined on[0,1]. Let W be a
nonnegative integrable random variable and(W(k,n))k,n�1 be a sequence of independent copies ofW , which are
assumed to be independent ofS. We will write Ws,� for W(k,n) if M(k,n)= (s, �) ∈ S.

Forq ∈ R, letψ(q)= −1+ E(Wq)
∫ 1

0 φ(s)q ds. Define theR-martingale

Qε(t)= exp
(−ψ(1)ν

(
Dε(t)

)) ∏
(s,�)∈S∩Dε(t)

Ws,�φ
(
�−1(t − s)

)
(t ∈ R, 0< ε � 1),

whereDε(t)= {(s, �) ∈ R × R+, � ∈ [ε,1), s ∈ (t − �, t)}.

Log-infinitely divisible cascades.A special statistically self-similar cascade was introduced in [1]. Fix(m, s) ∈
R

2 andπ a nonnegative Borel measure onR which satisfies
∫
|u|�1u

2π(du) < ∞ andπ((−1,1)c)) < ∞. The
measureπ is the Lévy measure of a real valued infinitely divisible random variableX which has its characteristi
functionE(eiξX)= eϕπ,m,s (ξ) with

ϕπ,m,s(ξ)= imξ − s2

2
ξ2 +

∫
R

(
eiξu − 1− iξ sinu

)
π(du).

With m, s andπ one can associate [13] a random functionPπ,m,s onB(R× (0,1]) (more precisely on Borel sets o
finite ν measure) such that ifν(B) <∞, E(eiξPπ,m,s (B)) = eϕπ,m,s (ξ)ν(B) (∀ξ ∈ R), and ifA1, . . . ,An are pairwise
disjoint Borel subsets ofB thenP(A1), . . . ,P (An) are mutually independent. LetI (q) = ∫

|u|�1 equπ(du). If
I (q) < ∞ then defineψ(q) = ϕπ,m,s(−iq). Assume thatI (1) < ∞ and choose(m, s) such thatϕπ,m,s(−i) = 0.
Then define theR-martingale

Qε(t)= ePπ,m,s (Dε(t)).

In the sequel we assume thats = 0 (without Gaussian component) and
∫
|u|�1 |u|π(du) < ∞ (giving a control on

the variations ofPπ,m,0(Dε(t)) in ε).
One recovers a special case of the first construction withφ = 1 by takingπ to be the probability law of logW .
In this Note we announce some results obtained.
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2. Asymptotic behavior of logQε(t)

For both previous constructions, we haveE logQε(t)= (ψ ′(0)−ψ(1))ν(Dε(t)) wheneverψ is defined near 0
We assume thatν(Dε(t))→ ∞ asε → 0 and consider the following level sets. Forβ ∈ R define

Fβ =
{
t ∈ R: lim inf

ε→0

logQε(t)

ν(Dε)
= β

}
, �Fβ =

{
t ∈ R: lim sup

ε→0

logQε(t)

ν(Dε)
= β

}
, Fβ = Fβ ∩ �Fβ.

Let

ᾱ = lim sup
ε→0

ν(Dε(t))

− logε
and α̂ = inf

b�2
lim sup
n→∞

sup
m�1

ν(Db−(n+m)(t) \Db−n (t))

logbm
.

Forq ∈ R such thatψ(q) is defined, letθ(q)=ψ(q)− qψ(1). Let J be the interior of the interval{q : θ(q) <∞}
(we have(0,1)⊂ J ). Forα � 0 andq ∈ J define

Λα(q)= 1+ α
(
θ(q)− qθ ′(q)

)
.

Theorem 2.1 (Caseᾱ = 0).Assumelim supε→0 εµ([ε,1)) <∞. Supposēα = 0. With probability one, for allq ∈ J

such thatΛα̂(q) > 0, we havedimFθ ′(q) = dimF θ ′(q) = dim �Fθ ′(q) = 1.

Theorem 2.2 (Case 0< ᾱ < ∞). Assume thatlim supε→0 εµ([ε,1)) < ∞. Suppose0< ᾱ < ∞. If J = R, with
probability one, for allq ∈ R such thatΛα̂(q) > 0, we havedimFθ ′(q) = Λᾱ(q) and for all q ∈ R such that
Λᾱ(q) < 0 we haveFθ ′(q) = ∅. If, moreover,ᾱ is defined by a limit(not just a limsup), the previous results hol
for F θ ′(q) and �Fθ ′(q) instead ofFθ ′(q).

Theorem 2.3 (Caseᾱ = +∞). Assumelimε→0 εµ([ε,1))= +∞ and0 ∈ J . Then, with probability one, we hav
limε→0 logQε(t)/ν(Dε)= θ ′(0) (∀t ∈ R).

3. Dvoretzky covering numbers

We consider the circleT = R/Z = [0,1), a decreasing sequence{�n}n�1 (1> �n ↓ 0) such that
∑∞

n=1 �n = ∞
and a sequence of i.i.d. random variables{ωn}n�1 of the uniform Lebesgue distribution. Denote byIn =
ωn + (0, �n) the open interval of length�n with left end pointωn. Define, forn � 1, thenth covering number
of t ∈ T by

Nn(t)= Card{1� j � n: In � t} =
n∑

k=1

1(0,�k)(t −ωk).

LetLn = ∑n
k=1 �k. For anyβ � 0, we define the (random) sets

FD
β =

{
t ∈ T: lim inf

n→∞
Nn(t)

Ln

= β

}
, FD

β =
{
t ∈ T: lim sup

n→∞
Nn(t)

Ln

= β

}
, FD

β = FD
β ∩ FD

β .

Define

ᾱD = lim sup
n→∞

∑n
j=1 �j

− log�n
, α̂D = inf

b�2
lim sup
n→∞

sup
m�1

∑
�j∈[b−(n+m),b−n] �j

logbm

and

dα(β)= 1+ α(β − 1− β logβ), α,β � 0.
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Theorem 3.1 (CaseᾱD = 0). Assumelim supn→∞ n�n <∞. SupposēαD = 0. With probability one, for allβ � 0
such thatdα̂D(β) > 0 we havedimFD

β = dimFD
β = dimFD

β = 1.

Theorem 3.2 (Case 0< ᾱD < ∞). Assumelim supn→∞ n�n < ∞. Suppose0< ᾱD < ∞. With probability one,
for all β � 0 such thatdα̂D(β) > 0, we havedimFβ = dᾱD (β), andFβ = ∅ for all β � 0 such thatdᾱD(β) < 0. If,
moreover,ᾱD is defined by a limit(not just a limsup), the previous results hold forFD

β and �FD
β instead ofFD

β .

Theorem 3.3 (Case ᾱD = +∞). Assumelimn→∞ n�n = ∞. Then, with probability one,limn→∞ Nn(t)
Ln

= 1
(∀t ∈ T).

4. Comments

Theorems 3.1–3.3 are proved in [4]. They complete and improve [7] which deals with the case�n = α
n

and
obtain the dimension ofFD

β for a fixedβ almost surely. The covering numberNn(t) is closely related to the
Poisson covering number Card(S ∩ Dε(t)) whenµ = ∑

n�1 δ�n . It is easy to see that ifW ≡ 1 andφ ≡ a we
have logQε(t) = Card(S ∩ Dε(t)) loga + (1 − a)ν(Dε(t)). Actually the method used in [4] can be adapted
study logQε(t) for the general constructions presented in Section 1. One of our main tools is to define
surely simultaneously (inq) the limit measures of Qε(t)

q

E(Qε(t)q)
λ (see [3,6]). These limit measures are carried by

sets in question. This yields a lower bound of the Hausdorff dimensions. The upper bounds are estimated
the definition of Hausdorff measures by using natural coverings. This involves uniform estimates similar t
obtained in the lower bound estimation.
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