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Abstract

We study the semi-classical Klein—Gordon operator in the one dimensional case, for a double-well potential. We obtain a
formal computation of the splitting in cases that were not yet studiedite this article: E. Servat, C. R. Acad. Sci. Paris,
Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé
Un calcul formel du splitting pour I’ opérateur de Klein—-Gordon. On étudie I'opérateur de Klein—Gordon dans le cas de
la dimension un, pour un potentiel présentant un double puits symétrique. On obtient une expression formelle du splitting dans

des cas qui n'étaient pas envisagés auparakaunt.citer cet article: E. Servat, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction and results

We are interested in the semi-classical Klein—-Gordon opeiter+/1 — h2A + V, in the one-dimensional
case. Folx, £) € R?, we write p(x, £) = /1 + £2 4+ V(x) the symbol ofP. We make the following assumptions
onv:
(H1) V is smooth, even, has a finite minimum denofgd- 1, andm‘x‘_mv =FE1—1>Ep—1.
(H2) The minimum ofV is attained at only two pointsxg, called potential wells, an¥’(+xg) # O.
Therefore, we know thaP has a self-adjoint extension [4] — still denotBd- and that its spectrum is discrete
in [Eo, E1[ [1]. Thanks to WKB constructions in a neighourhoodiofp [3], we can calculate the first eigenvalues
of P. The symmetry of the potential ensures that the two first eigenvalues are very close to each other, and we cal
splitting their difference.
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Many papers deal with the calculation of the splitting for Schrddinger operators. In particular in [3], Helffer and
Sjostrand define a matrix, that expresses the interaction between the potential wells of the problem. This interactior
matrix can be defined for the Klein—-Gordon operator. In the case of a double well and assuming that:

(H) There is a unique minimal geodesic for the Agmon distahee(1 — (V — Eo)i)+dx2 betweert-xg, and it
lies in the region{x € R", V(x) < Ep}.

Helffer and Parisse obtain the following limit which gives an estimate for the splittilng[2]:

/h
jim S

h—0 ﬁ
whereC, (V) can be calculated. Let us give an idea of their proof: define the operator with onwel;,
where foreg > 0, 1 € C3°(Ixo — €0, x0 + €ol), f1 = 0, B1(x0) > 0, andBz(x) = P1(—x). Let ul, j=1,2, bethe
normalised eigenfunctions & 4 §; associated to the first eigenvalue. Starting from the interaction matrix, the
authors obtain an estimate for the splitting that involvesithg only in a neigbourhood of the minimal geodesic.
Thanks to hypothesis (H), WKB solutions can be constructed in this region — exactly as for the Schrédinger operator
—and lead to (1).

The aim of this work is to calculate a splitting in the one dimensional case, when the hypothesis (H) is no more
satisfied. We then have to deal with the regi®n> Ep}, where analogies with the Schrédinger operator cannot be
made anymore. Actually, the problem comes from the fact that the fungtienp(x, &) is not holomorphic atti
and thus prevents deformations of paths integral in a strip larger{tha, |3z| < 1}. For later use, we denote
A =1i[1, 4oo[Ui]—00, —1], so thatC\ A is a simply connected domain whege-> p(x, £) is holomorphic.

Our strategy is the following: we start with the formula of the splitting in term ofithis, using the interaction
matrix. We prove that the main contribution is given by an integral involving the Fourier transforms:of the
neigbourhood ofti in C\ A. We then have to replace these Fourier transforms by explicit approximations. Such
approximations can be calculated in the vicinity{oke C, %iz =0, 1 — 2¢0 < |3z| < 1 — go}. Moreover, we can
extend them holomorphically neati in C\ A, if we make the assumption:

(H3) The set of poin¥ ~1(0) N [—x0, xo] is given by+b € £]0, xo[, and V' (b) 0.

We use these extensions to compute what we call a formal splitting:

=Cn(V), with S =d(—xo, x0), 1)

Theorem 1.1. The formal splittings (7) of a Klein—-Gordon operatoP satisfying(H1), (H2) and (H3) is given by

_ s(h)eS/h 4 1
im ———— =C1(V) = = |-y, 2
h—0 h 1V) V(D)2 b)3/2V " (xg) /4™ \ 2 S @
wheresS is the Agmon distance between the two wélls; d (—xo, xg), andI'(s) = fR+ e “ySdu fors > —1 and
can be extended.

Remark that the power d@fin the splitting (2) is different from the one obtained in [2] when the assumption (H)
is made, see (1).

To obtain the splitting from (2), one should prove that the Fourier transforms of the eigenfungtigns 1, 2,
is well approximated by the extensions we have constructed. The lack of holomorphy @f(x, £) arises again.

In the following, we first study the Fourier transforms of thé&€s, and then rewrite the splitting to prove
Theorem 1.1. Without loss of generality, we take from nowHpn= 0.

2. Fourier Transformsof the u/

In this section, we concentrate on the Fourier transform of the first eigenfunctiassociated to the potential
well —xg. The symmetry of the problem will give similar results fcf.
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Theorem 2.1. There existdV; a neigbourhood of in C\ A, there exists holomorphic functiorg andb,}, n >0,
defined inW;, such that the Fourier transform af can be written

N
VN eN, ul(g, h)=ht/4h@®/n ( D Wby + O(hN+1)>, (3)

n>0

for £ € W ¢ W; a neigbourhood irC of the segmenfl — 2sg, 1 — £0], eg > 0 small.

Proof. Let us recall a result from [2] concerning the exponential decreasing of the eigenfumttion
VK €R, 3N €N, 3C >0, [[e"ul| ;. <Ch7N, h<ho, (4)

whered; is the Agmon distance to the wellxg for the operato® + 1. Moreover, ifK is a compact, that belongs
to the connected component{df < 0} which contains-xo, we can construct a WKB solutiart such that

e/ (ut — vt | =0(h™), ie., YNeN, ICy, [eV"(u'—vY)] < Cyh". (5)
Let& € W a neigbourhood of[1 — 2¢0, 1 — &o]. The estimate (4) implies that modulq/&5°), we can replace
ul by xul in the computation ofit, for a cut off y € C°([—b — 2, —b — €]), & = £(e0). Then, (5) allows to

replaceyu® by its WKB approximationy®. Sincev?® is known explicitly, the method of the stationary phase [1]
gives functions); andb? in W as in (3). Furthermore, we can prove thiatsatisfies the so called eiconal equation:

and theb,}'s satisfy some first order differential equations, called transport equations. The assumption (H3) permits
us to extend holomorphically these functiondif), by means of (6) and the transport equations.

L2(K) L2(K)

As £ tends to i, the transport equations give the singularity obfrueat i

L. . . 1/4
Proposition 2.2. (i) We haveb%(l) = \V’(—b)\zl(/%\r‘;”(—xo)ll/s #0.
(i) For n > 0 there exists holomorphic functions W c,}, continuous at, such that
bp(&) — bp() = cHEVE 1, (7)
1
v G(8)
>l b®) = e (8)

We have similar results far? near—i. We now come to the splitting and Theorem 1.1.

3. Computation of the splitting

In this section, we first prove that the splitting can be written with an expression invoIvimlg\j ‘teearti, then
we replace these functions by the extensions given by (3)x leeC° (1—3eo, 3e0l), x = 1 in [—2e0, 2¢0], then:

Theorem 3.1. The splittings (k) is given bys(h) = 2w(h) + O(e~$+20)/ 1) where for any € [—xo+ €0, x0 — €0,

wiy =7 s [ @IS I 20,y (14 O(1)). (©)

We have denotefi! =i —ifh + [—¢o, €0l and "% = —i + iBh + [—¢0, €0], for anyB > O.
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Proof. On the one hand, we remark that the definition ofithis implies:
(P + Bju’ = r(Wyu! = (P — r(h))u/ = —B;u’ =0 forx € [—xo + 0, x0 — &0l (10)
Here(h) is the first eigenvalue of botR + B1(x) and P + B2(x) = P + B1(—x), because of the symmetry ¥f.

On the other hand, the splitting is given bg:) = 2w(h) + O(e~$+20/ 1) wherew(h) = (P — A(h))u?, ub)
is the interaction coefficient [3]. § (£) = /14 £2, (10) entails that for any e [—xg + €0, x0 — 0],

w(h):—ﬁL / é*<$+n>/*‘%ﬁ(g,h)uAZ(n,h)dgdn. (11)

We deform the integral patR; of (11) in the complex pla©® and prove that we can replace it G + i —i8h)e
for any 8 > 0. Indeed, this set is homotopicl in C\ A. Similarly, we replac&, by (R —i +igh),. We finally
write «/ in term ofu/, and use the exponential decreasing of the eigenfunctions ( 4) to fifd/taén (9). O

Remark 1. In higher dimensions, the functiai, n) — % is no longer smooth and formula (9) does not
hold. B. Helffer and B. Parisse solve this problem in [2].

We now replace in (9) the Fourier transformsof, j = 1,2, by the explicit formulas (3). Since (9) is
independent ok € [—xg + €0, x0 — €0] andB > 0, we calculate it fore =0 andg = % We have to estimate
the integrals:

_ pp+ iy @)/ h Guae/ndE) —a(m) 1 .2
Iyy = hPH / VL&) h dva(n)/ S e dedn. (12)
rixrz
Because of the holomorphy of the functions in the intedgal, we can deforml™/ in C\A. To calculately g
we prove that we only have to consider the paths:

I $:|—|2—b(1+lu—u2), lul <e/vh, (13)
. . h & . .
in=—i— |5vi, 0< vt < W wherevy =8I_|)n8+v +is e C\A. (14)

. . . (1+iu—142)/2 i —v/2
Thenlo,o = (i/2)(h/b)¥2e S/ M bbE(—i) fi wps oz du dv(1+ O(hY/2)).

We can compute the integral in the expressiorafin term of thel” function.
Similarly, we can calculate thd, , using the expression of the) in Proposition 2.2, and obtain the
Theorem 1.1. O

Remark 2. Let us mention that thé, ,'s have the same order of magnitude for@ll ¢) € (N*)2, ash goes to 0.
The scaling in power of is thus broken when integrating along the’s.
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