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Abstract

We prove the existence and uniqueness for a semilinear elliptic problem with memory, both in the weak and the
setting. This problem describes the effective behaviour of a biological tissue under the injection of an electrical curre
radiofrequency range.To cite this article: M. Amar et al., C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une equation elliptique avec histoire. On démontre l’existence et l’unicité pour un problème elliptique semilinéaire
mémoire, dans l’arrangement faible et classique. Ce problème décrit le comportement effective d’un tissu biologiq
l’injection d’un courant électrique dans le domaine des radiofréquences.Pour citer cet article : M. Amar et al., C. R. Acad. Sci.
Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let Ω be an open bounded subset ofR
N with regular boundary and letT > 0. We study the existence

uniqueness and regularity for the solution of the semilinear problem


−div

(
A(x)∇xu+

t∫
0

B(x, t − τ )∇xu(x, τ )dτ
)

= g(x, t, u) inΩ × (0, T ),

u= f in ∂Ω × (0, T ),
(1)

whereA(x) is a symmetric and positive definite matrix,B(x, t) is a symmetric matrix,g :Ω× (0, T )×R → R and
f : �Ω × (0, T )→ R are given functions. More precisely, in Section 2 we prove the well-posedness of probl
in a weak sense, by using a fixed point technique:
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Theorem 1.1. LetA ∈ L∞(Ω;R
N2
) be such thatλ|ξ |2 � A(x)ξ · ξ �Λ|ξ |2, for suitable0< λ < Λ <+∞, for

almost everyx ∈ Ω and everyξ ∈ R
N ; let B ∈ L2(0, T ;L∞(Ω;R

N2
)), and letf ∈ L2(0, T ;H 1(Ω)). Assume

thatg :Ω × (0, T )× R → R is a Carathéodory function such that

(G1) g(·, ·,0) ∈L2(0, T ;H−1(Ω)),
(G2) |g(x, t, s)− g(x, t, s′)| � L|s − s′| for a.e.(x, t) ∈Ω × (0, T ), and everys, s′ ∈ R,

whereL� λ
3C , if C is the best constant in the classical Poincaré inequality onΩ .

Then, there exists a unique functionu ∈ L2(0, T ;H 1(Ω)) satisfying in the sense of distributions problem(1).

In Section 3 we prove that, under further regularity assumptions on the data, existence and uniqu
classical solutions of (1) hold true, by using a delay technique. This regularity is instrumental in applic
(see [2]).

Theorem 1.2. Letm� 0 be any fixed integer and let also0< α < 1. LetA ∈ C1+α(�Ω;R
N2
) satisfy the assumptio

of Theorem1.1 and B ∈ C0([0, T ];C1+α(�Ω;R
N2
)) be such thatB ′ ∈ L2(0, T ;W1,∞(Ω;R

N2
)). Assume tha

g ∈ C0([0, T ];Cm+α(�Ω × R)) satisfies(G2) of Theorem1.1, with γL < 1, whereγ is a structural constan
depending only onλ, Λ, N, Ω, β,A, B, and that there existsL0> 0 such that

(G3) |g(x, t, s)|, |∇xg(x, t, s)|, |gt (x, t, s)| � L|s| +L0.

Let f ∈ C0([0, T ];Cm+2+α(�Ω)), with ft ∈ L∞(0, T ;Cm+2+α(�Ω)). Then there exists a unique functionu ∈
C0([0, T ];C1+α(�Ω))∩L∞(0, T ;Cm+2+α(�Ω)) solving(1) in the classical sense.

In the linear case, our problem can be compared to those studied in the context of linear elasticity i
where (1) is reduced to a Volterra equation and solved, under suitable hypotheses, by means of the spectra
C0([0, T ];C2+α(�Ω)). Problem (1), again in the linear case, is also studied in [3], in the context of weak solva
There, the Fourier transform technique is applied, under some assumptions on the asymptotic behavio
kernelB, in order to obtain the existence in the spaceL2(−∞,+∞;H 2(Ω)).

From the physical point of view, problem (1) describes the effective behaviour of a biological tissue un
injection of an electrical current in the radiofrequency range [1,2]. Here, the unknownu represents the electric
potential and the driven electrical current−A(x)∇xu− ∫ t

0 B(x, t − τ )∇xu(x, τ )dτ depends on the history of th
electrical field−∇xu, therefore it is nonlocal in time.

2. Proof of Theorem 1.1

We note that, possibly replacingu with v = u − f and g with g̃(x, t, u) = g(x, t, u) − div(A(x)∇xf +∫ t
0 B(x, t − τ )∇xf (x, τ )dτ ), there is no loss of generality in assumingf ≡ 0. Consider the Banach spa

X = L2(0, T1;H 1
o (Ω)), endowed with the usual norm‖u‖X := (

∫ T1
0

∫
Ω |∇xu|2 dx dt)1/2, where T1 will be

chosen later. Let us introduce an operatorH acting onX by means ofH(u) = w, wherew is the solution
of −div(A(x)∇xw) = div(

∫ t
0 B(x, t − τ )∇xu(x, τ )dτ )+ g(x, t, u), with null trace on∂Ω , and t fixed almost

everywhere in(0, T ). Clearly, the operatorH is well defined; moreover, multiplying the previous equation byw
and integrating by parts, we obtain thatH(X)⊂X.

Given u1, u2 ∈ X, we have thatw = H(u1) − H(u2) has null trace on the boundary∂Ω and solves
−div(A(x)∇xw)= div(

∫ t
0 B(x, t − τ )∇xu(x, τ )dτ )+ g(x, t, u1)− g(x, t, u2), whereu= u1 − u2. Again multi-

plying the previous equation byw and integrating by parts, it follows
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‖w‖2
X = ∥∥H(u1)−H(u2)

∥∥2
X

� γ

δ
T1‖u‖2

X + γ δ‖w‖2
X + CL

2λ
‖u‖2

X + CL

2λ
‖w‖2

X,

whereγ depends only onλ andB. Now, recalling thatL� λ
3C and choosingδ = 1

6γ andT1<
1

36γ 2 , we can absorb
the second and the fourth term of the last inequality into the left-hand side, obtaining thatH is a contraction. So
it admits a unique fixed point, i.e., a solution of (1) exists inX. Noting that the widthT1 of the time interval is
independent of the iteration step, we may conclude the proof by iterating this argument over(0, T ).

Remark 1. It is well known, in the case of linear elliptic equations (i.e., (1) withB ≡ 0,g = σu+h), that a unique
solution exists ifσ ∈ R is not an eigenvalue of the differential operator.

In our case, a similar result holds. Let us look at the problem (1) whereg(x, t, u) = σ(t)u + h(x, t), with
h ∈ L2(0, T ;H−1(Ω)) andσ ∈ L∞(0, T ), with dist(σ (t), σA) � c0 > 0, whereσA denotes the spectrum of th
elliptic operator associated to the matrixA, with homogeneus Dirichlet boundary conditions.

Note that we dispense here with the requirement (G2) on the smallness of the Lipschitz constantL. In fact,
the proof of Theorem 1.1 can be carried out in this case essentially as above, once we have establi
the solutionw ∈ H 1

o (Ω) of −div(A(x)∇xw) − σ(t)w = div(
∫ t

0 B(x, t − τ )∇xu(x, τ )dτ ) satisfies, for every
u ∈ L2(0, T ;H 1

o (Ω)), ‖w(t)‖H1
o (Ω)

� K‖u‖L2(0,T ;H1
o (Ω))

, ∀0 � t � T , with K independent oft . In turn this
estimate follows from Fredholm theory and from our assumptions on the functionσ .

3. Proof of Theorem 1.2

We will prove that the unique weak solution found in Theorem 1.1 actually belongs toC0([0, T ];C1+α(�Ω)) ∩
L∞(0, T ;Cm+2+α(�Ω)).

Assumem= 0 and set

‖u‖t(2+α) := ess sup
0�τ�t

∥∥u(·, τ )∥∥
(2+α), (2)

where‖·‖(m+α) is the norm inCm+α(�Ω). Analogously, if we indicate with‖·‖2,q and‖·‖∞ the norms inW2,q(Ω)

andL∞(Ω), respectively, we can consider the corresponding norms‖ · ‖t2,q and‖ · ‖t∞ in the sense of (2).
Let us introduce a sequence of approximating problems

−div
(
A(x)∇xuh

)= div

( th∫
0

B(x, t − τ )∇xuh(x, τ )dτ
)

+ g(x, t, uh(x, th)) inΩ × (0, T ),

uh(x, t)= f (x, t) on∂Ω × (0, T ),
(3)

whereth = max(0, t−h), for 0< t < T and any fixedh > 0, anduh(x,0)=: u0(x) is given by the unique solutio
of the standard elliptic nonlinear equation

−div
(
A(x)∇u0(x)

)= g(x,0, u0(x)
)

which coincides withf (·,0) on the boundary∂Ω .
Existence of a solutionuh ∈ C0([0, T ] × �Ω × R) ∩L∞(0, T ;C2+α(�Ω)) is elementary, moreover, by standa

elliptic estimates, using also (G3), we have that, for everyt ∈ [0, T ],

‖uh‖t2+α � γ
( th∫

0

‖uh‖τ2+α dτ +L‖uh‖t2+α + ∥∥∇xg(uh)∥∥t∞ + ∥∥g(uh)∥∥t∞ + ‖f ‖t2+α

)

� γ
( t∫

‖uh‖τ2+α dτ + 3L‖uh‖t2+α + 2L0 + ‖f ‖T2+α

)
, (4)
0
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whereγ is a structural constant depending onλ, Λ, N, Ω, β,A, B. Taking into account thatL is small and
using Gronwall’s lemma, it follows that‖uh‖T2+α � γ, whereγ now depends also onL, L0, ‖f ‖T2+α . Now let us
consider the following problem

−div
(
A(x)∇xu′

h

)= div

(
B(x,h)

∂th

∂t
∇xuh(x, t)+

th∫
0

B ′(x, t − τ )∇xuh(x, τ )dτ
)

+ gs
(
x, t, uh(x, th)

)
u′
h(x, th)

∂th

∂t
+ gt

(
x, t, uh(x, th)

)
, (5)

with u′
h = ft on the boundary∂Ω andu′ stands for the temporal derivative ofu.

This is a standard linear elliptic problem inu′
h (whereuh andu′

h(x, th) are regarded as known function
with a nonzero source term. Hence (see, e.g., [6], Chapter 9) for everyq � 2, we have existence and uniquen
of a solutionu′

h ∈ L∞(0, T ;W2,q(Ω)); moreover,‖u′
h‖t2,q � γ (‖uh‖t2,q + L‖u′

h‖thLq + ∥∥gt (uh)∥∥t∞ + ‖ft‖t2,q).
Therefore, sinceL is sufficiently small, using again (G3), we obtain

‖u′
h‖T2,q � γ

(‖uh‖T2,q +L0 + ‖ft‖T2,q
)
� γ. (6)

By (6) and taking into account that (4) implies‖uh‖T2+α � γ , it follows thatuh, (uh)xi , (uh)xixj ∈L∞(ΩT ), (uh)t ,
(uh)txi , (uh)txixj ∈ Lq(ΩT ) uniformly with respect toh, whereΩT =Ω × (0, T ). This implies that, if we choos
q > N sufficiently large, the sequences{uh}, {(uh)xi } are compactly embedded inC0(�ΩT ), being uniformly
Hölder continuous with exponentα. Now, up to a subsequence, we can pass to the limit forh → 0+ in the
weak formulation of (3), obtaining thatuh → u ∈ C0([0, T ];C1+α(�Ω)), whereu is a solution of (1). Moreover
u ∈L∞(0, T ;C2+α(�Ω)), as follows by applying the calculations in (4) to the original problem solved byu.

Now letm ∈ N . By classical elliptic estimates, it follows

∥∥u(·, t)∥∥
(m+2+α) � γ1

∥∥g(u)∥∥t
(m+α) + γ1‖f ‖t(m+2+α) + γ2

t∫
0

∥∥u(·, τ )∥∥
(m+2+α) dτ

whereg(u)= g(x, t, u(x, t)). After an application of Gronwall’s lemma, we obtain

‖u‖T(m+2+α) � γ1
∥∥g(u)∥∥T

(m+α) + γ1‖f ‖T(m+2+α). (7)

Hence,u ∈ L∞(0, T ;Cm+2+α(�Ω)), whenever‖g(u)‖T(m+α) is bounded. Ifm= 1, by the first part of the proof w

have that‖g(u)‖T(1+α) is bounded, which implies thatu actually belongs toL∞(0, T ;C3+α(�Ω)). The proof is then
concluded by induction overm in (7).
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