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Abstract

In this article, we propose to study, in more generality, the probability-weighted moments method used by Hosking and Wallis
(1987) in the case of generalized Pareto distributions which depend on two paraynatets . The objective is to extend the
domain of validity:y < 1/2 required in order to obtain the asymptotic properties of their estimators. By simulations, we show
the efficiency of our techniqudo cite thisarticle: J. Diebolt et al., C. R. Acad. Sci. Paris, Ser. | 338 (2004).
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Résumé

Un nouvel apercu sur les estimateurs des moments pondér és. Dans cet article, nous proposons d’étudier, dans un cadre
plus général, la méthode des moments pondérés utilisée par Hosking et Wallis (1987) dans le cas de distributions de Paret
généralisées dépendant de deux paramétretss . L'objectif est d’élargir le domaine d’applications’: < 1/2 indispensable
pour obtenir les propriétés asymptotiques de leurs estimateurs. Nous montrons l'efficacité de notre technique par le biais de
simulations Pour citer cet article: J. Diebolt et al., C. R. Acad. Sci. Paris, Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version francaise abr égée

Les lois de Pareto généralisées ont été introduites par Pickands [6] pour modéliser les exces au-dela d'un seui
Elles dépendent de deux parameétpest 0. Leur évaluation n’est généralement pas un probléme facile. Hosking
et Wallis [5] ont proposé d’utiliser une version simplifiée des estimateurs des moments pondérés (PWM), ou seuls
les deux premiers moments sont utilisés, et par simulations ils ont montreé I'efficacité de leur technique par rapport
a des approches plus standards, comme la méthode du maximum de vraisemblance ou la méthode des momer
Le probleme essentiel de leur approche est le domaine de valigité 1/2, indispensable afin d’obtenir les
propriétés asymptotiques de leurs estimateurs. Le but de cet article est donc d'utiliser la méthode PWM dans toute
sa généralité de facon a élargir le domaine d’applications et de permettre ainsi un plus large éventail d'utilisations
de cette technique. Nous illustrons par simulations I'efficacité de cette nouvelle approche.
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1. Introduction

The distribution of the largest values of certain natural phenomena (e.g., waves, earthquakes, fjaedd
interest in many practical applications. This interest has given rise to a rapid development of extreme value theory
in recent years. The traditional approach to the analysis of extreme values in a given population is based on the
family of generalized extreme value (GEV) distributions (see Fisher and Tippett [3]).

The GEV distribution is appropriate when the data consist of a set of maxima. However, there has been some
criticism of this approach, because using only maxima leads to the loss of information contained in other large-
sample values in a given period. This problem is remedied by considering several of the largest order statistics
instead of just the largest one: that is, considering all values larger than a given threshold. The differences betweel
these values and a given threshold are called exceedances over the threshold. These exceedances are typice
assumed to have a generalized Pareto distribution(@RD whose distribution function is defined by

y -1/y
1+—x> if y£0, o >0,

o

a
Gy,a(x) =

1)
1—exp<—£> if y=0, o >0,
(o2
wherex € [0, 00[ if y > 0andx € [0, —o/y[if y < 0,0 andy being the scale and shape parameters.

Among all the ad-hoc methods used in parameter estimation, the method of moments has attracted a lot of
interest. In full generality, it consists in equating model-moments base&d,onto the corresponding empirical
moments based on the data. Their general properties are notoriously unreliable on account of the poor sampling
properties of second- and higher-order sample moments. Another currently favored method consists in using the
maximum likelihood (ML) approach, whose justification is based on large-sample theory, and therefore there has
been little assessment of the performance of this method when applied to small or moderate samples. Since neithe
method is completely satisfactory, we propose to use, in this paper, the probability-weighted moments method
in its full generality. First we explain the ‘classical’ probability-weighted moments (PWM) method, which was
introduced by Greenwood et al. [4] and used by Hosking and Wallis [5]. Note that all these methods (moments,
ML, PWM) were also used in order to estimate the parameters of the GEV distribution and that recently, Coles and
Dixon [1] introduced a penalized likelihood method which improves on the small-sample properties of the classical
ML method.

The probability-weighted moments of a positive random vari&bleth distribution functionF (x) = P(X < x)
are the quantities

Mp,s =E(XP(F(X)) (1- F(X))"),

wherep, r ands are positive real numbers.

Greenwood et al. [4] exhibited several distributions (the Gumbel, logistic and Weibull distributions, among
others) for which the relationship between the parameters of the distribution and the B¥Msis simpler
than the relationship between the parameters and the conventional maents Whenr ands are integers,
F"(1— F)®* may be expressed as a linear combination of either poweFsarsfpowers of(1 — F), so it is natural
to summarize a distribution either by the momemts, o (r =0,1,...) orbyM10, (s=0,1,...).

Hosking and Wallis [5] proposed to base estimation on the first two probability-weighted moments:

ps =E[X(1= GyroX0) = g,y Withs=0ands=1

The parametergy, o) can be recovered by

2
Ko and O’Z&

y=2—-—"9 :
mo — 2u1 o — 2pe1
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The PWM estimatorg,, and g, are obtained by replacingo and u1 by estimators based on an observed
sample of size:. For instance, Hosking and Wallis [5] proposed to yse= %Z?zl(l —pjn)’Xjn, where
X1, < -+ < X,,» denotes the ordered sample amg, = (j — 0.35/n. Fory < 1/2, the probability-weighted
moments estimatorg, andg,, are asymptotically normally distributed with a variance-covariance matrix given by

1 (a—w@ﬂﬂu—wmﬁ>ow—mzﬁwwﬁ—b%>
1-29)B=2y) \o(y —2)2—6y +Ty2—-2y3  o2(7—18y +11y2—2y3)

The PWM estimators have several advantages over existing methods of estimation. They are fast and straightfor
ward to compute and always yield feasible values for the estimated parameters. The biases of the estimators ar
small and they decrease rapidly as the sample size increases. The standard deviations of the PWM estimators a
comparable with those of the ML estimators for moderate sample sizes and are often less than those of the ML
estimators for small samples.

The main problem with this method is the range of validjty 1/2, in order to derive the asymptotic properties
of the PWM estimators. This condition is restrictive for many applications (as in insurancevhere at least
the domainy < 1 should be covered. In order to solve this problem, we propose to use the PWM method in
its full generality, i.e. the approach used should not be reduced to the two first moments only. With this aim,
instead of defining the estimatatg,, 5,) of (y, o) on the basis of/io, /11), we propose to define new estimators
(Vs1.52.n5 Osy,55,n) D@SE OMflsy 0, fLsp,n) defined as

]

m/(l—lﬁ‘n(x))sﬁldx, (2)
0

/lsl,n =
wherelF, is the classical empirical distribution function based¢n.. ., X,, a sample from a GP@, o), andsy
ands2 are real numbers such thatls1 < s».

In Section 2, we establish the main asymptotic propertie§igf .. its,») from which we deduce those of
(Vs1.s0.n» Os1,50,n) - ThEN, in Section 3, some simulations are proposed in order to give an indication about the choice
of the parameteréss, s2). The couple(sy, s2) = (1, 1.5) seems to give, in all our simulated examples, estimators
with small variances. Finally, we study the efficiencyefi s, in a MSE-sense.

2. Main results
Let 1< 51 < s2. We denote by, 5, the c1-diffeomorphism which transform@s, , tts,) iNto (y, 0):

T(s1.50) 1 10, oo[2N {,»): 1+ Dx > (s24+ Dy} —> 1—00, 514 1[ x 10, o0,

_ 1+ D — G2+ D20 2+ D01+ D02 = sDma s,

(s1+ Dpg, — 2+ Dpy, (s1+ Dpg, — 2+ Dy,

Now, we need to define an estimator for the PWMM. For practical reasons, we propose to use the estirigior
defined in (2) and we establish in our Theorem 2.1 the asymptotic normalify;of, fis,,)-

Theorem 2.1. Let pu,, and py,, 1 < s1 < 52, be the PWM of a random variable X from a GPD(y, o). Denoting
their estimates by fi,, » and fis,,, respectively, thenfor all y <s1+1/2:

1 1
\/’;(/lsl,n — Ms15 llsz,n — Isp) — (U / tsl_y_lB(t) dr,o / tsz_y_lB(t) dt) )
0 0
where B is a Brownian bridge and the variance-covariance matrix of the limiting distribution is given by
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2 o2

g
r _ (251+1-2y) (s1+1-y)? (s1+1—y) (s2+1—y) (s2+s1+1-2y)
51,52 o2 o2 .
(s1+1=y) (s2+1=y) (s2+s1+1-2y) (2504+1—2y) (s2+1—y)2

Proof. A Taylor expansion of order 2 with remainder gives

o0

sy — 1sy) =4 — / an(F(x))(1— F(x))"dx

x® s1—1
7/ - t) ot,, F(x)))2<l— F(x)— %an (F(x))) ' dedx =: T1 + T2,

whereq,, (-) denotes the classical empirical process based on uniform random variables. Then, we prove that, for
ally <s1+1/2,
1
T1p —¢ —o/tsl_”_lB(t) dr,
0

T, —Fo
To studyTy, ,, we decompose the integral into three parts: the integral fronf0t@m I to 1— 1 and from 1~ 1
to 1. The first and the last integral can be treated using Jaeschke’s theorem (see, e.g., Shorack and Wellner [7

p. 600). For the second one, we use Einmahl and Mason’s result [2]. For the converg&ngémd in probability,
we first remark that, after changing variables,

1 1
s1—1
0< TUO/|an(1—u)|O/|an(l—u)|<u— %aﬂl—u)) u=?~1dr du

< —U/an(l— M)((M — %an(l— M)) 1 _ u31>u—)’—ldu.
0

Let Uy < -+ < Uy, be the uniform random variables on which the proeess) is based. We decompose the
latter integral into two parts: from 0 t©', and fromU1 , to 1. The convergence to O in probability Bf , then
follows by application of Jaeschke’s theorem and use of Kiefer's theorem and Robbins and Siegmund’s theorem
(see, e.g., Shorack and Wellner [7], pp. 407—408). Theorem 2.1 can then easily be deduced.

From this theorem, we can now establish our main result which is the asymptotic normality of our estimators
(),/\sl,sz,na 831,s2,n)1 for all y <s1+ 1/2

Corollary 2.2. Let ys, 5,.» @nd &y, s, » be the estimators of the GPD(y, o) deduced from the estimators (i, , and
fLs,.n USING the C1-diffeomorphism T(s1,50)- Then, forall 1<s1 <spandall y <s1+1/2,

. A d

\/;l()/sl,sz,n — Vs O0sq1,50,n — o) —> N(Os Zsl,sz)s
where

51,50 = Asps2151, S2As1 527

with A, s, = DT(sq,50)(Usy s tsy)-
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Proof. From Theorem 2.1, we derive that

. R 1
(Vsl,sz,na Usl,sg,n) =4 T(S]_,Sz) <(,usls Msz) + ﬁ (Sl + S](_n)a &+ é,.:z(n))) s
whereé = (&1, &2) follows aN (0, I, ,) distribution anck™ = (5{"), 52(”)) converges td0, 0) in distribution as
n — oo. A Taylor expansion of , ,,) gives our Corollary 2.2.

3. Simulations

Our aim now is to give some indications about the choice of the parametess). If we study the expression
of X, s, as afunction ofsy, s2), we find that there is no value @f1, s2) which minimizes the asymptotic variance
Of Vs;,5,,n @NAGy, 5, » Simultaneously in the domaifisz, s2): 1 < s1 < 52, ¥ < 51+ 1/2}. However, a graphical
study of these functions for different values pf(—1/2,0,1/2, 3/4, 1) shows that they have almost the same
behaviour. Considering the optimal values et s2) in these cases, the choice(®f, s2) = (1, 1.5) seems to be a
good compromise for practical use. For examplefet 0, the optimal value igs1, s2) = (1, 1.1), and fory =1,
itis (1, 2). Note that this means that the asymptotic properties of our estimators are validyfot &2, which is
enough for many applications. As an example, we give in Fig. 1 the resultg ferl, o = 1).

A computer simulation experiment was run using the valggss2) = (1, 1.5) for the GPD. Simulations
were performed for sample sizes= 25,50, 100, 200 and 500 with the shape parameter taking the values
y =—0.4,0,0.4, 1. The scale parameterwas set to 1 throughout. Since the method is equivariant under scale
changes of the data, setting= 1 involves no loss of generality. For each combination of valuesasfdy , 50 000
random samples were generated from the GPD. Our simulation results are summarized in Table 1, which gives
the root mean squared error (RMSE)#®f s, » (Similar results can be obtained féy, s, ,). We can see that the
generalized PWM method seems to give small RMSE in all the cases and these RMSE decrease quickly as th
sample size increases.
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Fig. 1. Graph of the asymptotic variancejgf s, » for (y =1,0 =1) whereX =53, ¥ =55 — s1.
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Table 1
RMSE of y5, s, for different values of: andy (o = 1)
n )4
-0.4 0 0.4 1
25 0.56 046 039 0.40
50 0.36 030 026 0.30
100 0.24 @0 018 0.23
200 0.17 015 Q012 0.17
500 0.10 0088 Q078 0.11
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