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Abstract

We prove asymptotic expansions of generalized scattering phases asssociated to pairs of Laplacians, for a class of n
manifolds with infinite volume and negative curvature near infinity. We use one of these expansions to define
determinants which appear naturally in this context.To cite this article: J.-M. Bouclet, C. R. Acad. Sci. Paris, Ser. I 338
(2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Phases de diffusion generalisées pour des variétés asymptotiquement hyperboliques. On démontre des développemen
asymptotiques de phases de diffusions généralisées associées à des couples de Laplaciens, pour une classe de
compactes, de volume infini et à courbure négative près de l’infini. On utilise un de ces développements pour définir de
déterminants relatifs qui interviennent de façon naturelle dans ce contexte.Pour citer cet article : J.-M. Bouclet, C. R. Acad.
Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

In this Note we display recent results[3] of spectral analysis on asymptotically hyperbolic manifolds o
dimensionn � 2. Our definition of such a manifold(X,G) is the the one of [8]: we assume the existence o
relatively compact setU such thatX \ U is isometric to(0, ε)x × Y , equipped with a metric of the form

dx2 + h(x)

x2

with h(·) a family of metrics on the compact manifold (not necessarily connected)Y , depending smoothly o
x ∈ [0, ε). Note thatX is of infinite volume and that the smoothness ofh at x = 0 reflects the fact that it is
perturbation ofh(0). For any suchG, we can consider the related volume form dµG and the Laplacian�G, so that
�G is essentially self-adjoint fromC∞

0 (X).

E-mail address:Jean-Marc.Bouclet@math.univ-lille1.fr (J.-M. Bouclet).
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If we are given two such metricsG0 andG1, i.e., of the form(dx2 + hi(x))/x2 on (0, ε) × Y, i = 0,1, we will
say that theycoincide at infinityif

h1(0) = h0(0).

Our aim is tocomparethe associated Laplacians. More precisely, we will consider the operators

H0 = �G0, H1 = U−1�G1U

which are both essentially self-adjoint onL2(X) := L2(X,dµG0) by choosingU = (dµG0/dµG1)1/2. There is a
large literature on the scattering theory of such operators, especially on scattering poles or scattering ma
which we quote [1,4–6,8,10]; our goal is to define some new tools which appear naturally in this framewo
whose lack lead some authors to technical restrictions.

We were for instance motivated by the recent paper[1] where Borthwick, Judge and Perry study therelative
determinantDet1(z) (see below for a definition) associated to a pair of Laplacians on a hyperbolic surface. Sin
they work on a surface, they can do natural assumptions ontheir operators, namely that the coefficients ofH1 −H0
areO(x2) nearx = 0, allowing them to define Det1(z) thanks to the relative zeta function [11], using Birma
Krein’s theory. However this method fails in higher dimensions: in that case, one need to do artificial assu
onH1 − H0, which excludes metrics which coincide at infinity, in order to use Birman–Krein’s theory. Recall th
this theory [12] states that, forany pair of self-adjoint operatorsA0,A1 such that(A1 + i)−N − (A0 + i)−N is trace
class, there is a functionξ1 ∈ L1

loc(R) such that

tr
(
f (A1) − f (A0)

) = 〈ξ ′
1, f 〉, f ∈ S(R),

where〈·, ·〉 is the pairing betweenS andS ′. If A1 = H1 andA0 = H0, the trace class condition depends on
decay ofH1 − H0 near infinity, i.e., nearx = 0: it is satisfied if the coefficients ofH1 − H0 areO(xn−1+δ)

for someδ > 0. But the latter is to strong if one only requires thatG0 and G1 coincide at infinity, since
H1 − H0 = O(x) in that case. Nevertheless, ifG0 − G1 =O(x2), which happens in many interesting applicatio
thenH1 − H0 = O(x2) fulfills the trace class condition in dimensionn = 2, and this is precisely the framewo
of [1].

The first purpose of this Note is to explain how to define relative determinants in the general case.
proceed as in [2], where long range perturbations of the Euclidian Laplacian were considered, using Koplienk
regularization [9] which consists in replacingf (H1) − f (H0) by

[
f (Hε)

]
p := f (H1) −

p−1∑
j=0

1

j !
dj

dεj
f (Hε)|ε=0, Hε = H0 + ε(H1 − H0)

for a suitablep. Before stating our first theorem, we introduce two other notations; we define the vo
density dµε naturally associated with the principal symbolpε of Hε, that is the density associated with t
riemannian metric defined bypε in the fibers ofT ∗X. In particular, on{x < ε}, we have dµε/dµG0 = det(1 +
εh1(x)−1h0(x))−1/2. We can then define

[dµε]p = dµ1 −
∑
j<p

j !−1∂j
ε dµε|ε=0.

Note that both[f (Hε)]p and [dµε]p are independent ofε; these notations simply reflect the fact that they
defined by Taylor expansions of functions ofε.

Theorem 1. LetG0,G1 be two asymptotically hyperbolic metrics which coincide at infinity. Then

(i) for all p � n and all f in the Schwartz space,[f (Hε)]p is trace class. Furthermore there exists a uniq
ξp ∈ S ′(R) which vanishes on(−∞,0) and such that

〈ξ ′
p, f 〉 = tr

[
f (Hε)

]
p, f ∈ S(R).
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We callξp the generalized scattering phase of orderp.
(ii) The distributionξp is a continuous function on((n − 1)2/4,∞).
(iii) The Laplace transform ofξ ′

p has a full asymptotic expansion ast ↓ 0:

tr
[
e−tHε

]
p ∼ t−n/2

∑
j�0

aj t
j , with a0 = �

(
n

2
+ 1

)
(2π)−nωn

∫
X

[dµε]p,

whereωn is the volume of the unit ball ofRn.

This first theorem is a regularized form of the usual heat expansion on compact manifolds. It was pr
the asymptotically Euclidian case onRn in [2], and it is new for asymptotically hyperbolic manifolds. Using t
methods of [2], we can now define the associated determinants of orderp:

Corollary 1. For all z /∈ [0,∞), the regularized zeta functionζz(s) := tr[(Hε −z)−s]p is well defined forRe(s) 	 1
and has a meromorphic continuation to the whole complex planeCs , regular at s = 0. Thus the following
regularized determinant

Detp(z) := exp
(−ζ ′

z(0)
)

is defined and is holomorphic onC \ [0,∞).

In dimensionn = 2, with H1 − H0 = O(x2), the definition of Det1(z) of [11,1] is the above one withp = 1.
There are several reasons justifying that Detp(z) is indeed a determinant, forp � 1. For instance, it is shown in [2
that if Hε = −� + εV on Rn

y , with a long range potentialV (y) =O(〈y〉−δ) for δ > n/p, then

Detp(z) = detp
(
1+ V (H0 − z)−1)

with detp(1+ A) the usual Fredholm determinant defined forA in the Schatten classSp [12].
Our next theorem deals with the pointwise behavior ofξp(λ). This result is a natural extension of the o

announced in [5] where Froese and Hislop show thatξ1(λ) =O(λn/2), for λ ↑ ∞. Here again, the use ofξ1 prevent
them from considering the natural caseH1 − H0 = O(x), as explained before Theorem 1. The introduction oξp
will allow us to do so.

We have no room to explain how to prove pointwise expansions ofξp, however we point out that the pro
of the next theorem is based on the introduction of Isozaki–Kitada method [7,2] for asymptotically hyp
manifold. The interest of this method is to construct a good microlocal long time approximation of e−itHε/λ

1/2
near

infinity. This approximation depends on the geometry ofX near infinity and is of special interest for operato
H0, H1 which arenoncompactly supportedperturbations of eachothers. This means that its main interest is to
with the difference betweenH0 andH1 near infinity. Note moreover that, in scattering theory, one usually cons
the operatorH1 as a perturbation ofH0 which is viewed as a model operator. Unlike the case ofR

n where−� is a
canonical choice of model operator, here we have many possible choices forH0. Since the manifold can be arbitra
on a large compact set, we will choose an operatorH0 which differs fromH1 only in the neighborhood of infinity
For instance, as the curvature associated withG1 is asymptotically−1, one can consider an operatorH0 associated
with a metric of constant curvature near infinity. The latter can be of interest in view of the recent result of [4].

Theorem 2. LetG1 be an asymptotically hyperbolic metric onX. Assume moreover that it is nontrapping(i.e., that
for any compact setK ⊂ S∗X, there existsT such thatφt(K) ∩ K = ∅ for |t| � T , φt being the geodesic flow).
Then, for anyG0 which coincides withG1 at infinity and outside a neighborhood of infinity,ξp has a complete
asymptotic expansion asλ ↑ ∞
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ξp(λ) ∼ λn/2
∑
j�0

bjλ
−j , b0 = (2π)−nωn

∫
X

[dµε]p.

This theorem can be improved in several ways, which we explain below, however it shows anyway
precised result than the estimate of Froese–Hislop andits main interest is that we can consider natural conditi
on G1 − G0 at infinity. Furthermore, there are very few results on scattering phases in this context [5,6] an
seems to be the first example of full asymptotic expansion of a scattering phase, for negatively curved m
obtained, for instance, by metric perturbation of the hyperbolic spaceHn.

The main improvement of this theorem would be to relax the nontrapping condition. In this case, one onl
expects to get a Weyl formula of the formξp(λ) = b0λ

n/2 + O(λ(n−1)/2). This will be proved elsewhere, using
refinement of the constructions of [3] combined with [4]. One could also relax the condition thatH1 andH0 should
coincide on a large compact set. This would use the analysis of [3] combined with extra technical modification
such as some improved propagation estimates comingfrom Mourre theory, which will be proved separately.
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