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Abstract

We prove asymptotic expansions of generalized scattering phases asssociated to pairs of Laplacians, for a class of noncompa
manifolds with infinite volume and negative curvature near infinity. We use one of these expansions to define relative
determinants which appear naturally in this cont@xt.cite this article: J.-M. Bouclet, C. R. Acad. Sci. Paris, Ser. | 338
(2004).
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Résumé

Phases de diffusion generalisées pour des variétés asymptotiquement hyperboliques. On démontre des développements
asymptotiques de phases de diffusions généralisées associées a des couples de Laplaciens, pour une classe de variétés
compactes, de volume infini et a courbure négative présidfnl. On utilise un de ces délappements pour définir des
déterminants relatifs qui interviennent de facon naturelle dans ce corfPexteciter cet article: J.-M. Bouclet, C. R. Acad.

Sci. Paris, Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

In this Note we display recent resulf8] of spectral analysis on asynmgically hyperbolic manifolds of
dimensionn > 2. Our definition of such a manifol@X, G) is the the one of [8]: we assume the existence of a
relatively compact s€t such thatX \ ¢/ is isometric to(0, ¢), x Y, equipped with a metric of the form

dx? + h(x)
x2

with 2(-) a family of metrics on the compact méold (not necessarily connected) depending smoothly on
x € [0, ¢). Note thatX is of infinite volume and that the smoothnesshoft x = 0 reflects the fact that it is a
perturbation of:(0). For any suchG, we can consider the related volume formgland the Laplaciar g, so that
Ag is essentially self-adjoint frora'3° (X).
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If we are given two such metrias® andG1, i.e., of the form(dx? + A/ (x))/x% on (0,¢) x ¥, i =0, 1, we will
say that theyoincide at infinityif

ht(0) = h%(0).
Our aim is tocomparethe associated Laplacians. More pssty, we will consider the operators
Ho=Ago, Hi=U1AquU

which are both essentially self-adjoint @f(X) := L?(X, dugo) by choosingU = (dugo/dug1)Y/2. There is a

large literature on the scattering theory of such operators, especially on scattering poles or scattering matrices fo
which we quote [1,4-6,8,10]; our goal is to define some new tools which appear naturally in this framework and
whose lack lead some authoestechnical restrictions.

We were for instance motivated by the recent pdfgwhere Borthwick, Judge and Perry study tiedative
determinantDet; (z) (see below for a definition) associated to ardilLaplacians on a hyperbolic surface. Since
they work on a surface, they can do natural assumptioiseinoperators, namely that the coefficientdaf— Hg
are O(x?) nearx = 0, allowing them to define Detz) thanks to the relative zeta function [11], using Birman—
Krein's theory. However this method fails in higher dimensions: in that case, one need to do artificial assumptions
on H1 — Ho, which excludes metrics which coincide at infinity order to use Birman—Krein’s theory. Recall that
this theory [12] states that, fany pair of self-adjoint operatorsy, A1 such thaiA; +i)~" — (Ag+i)~V is trace

class, there is a function e Llloc(R) such that

tr(f(A1) — f(A0)) = (&1, f), feSM),

where(., -) is the pairing betwee¥ andS’. If A1 = H1 and Ag = Hp, the trace class condition depends on the
decay of H1 — Hog near infinity, i.e., nearx = O: it is satisfied if the coefficients off; — Ho are O(x"~11%)

for somes > 0. But the latter is to strong if one only requires th@? and G coincide at infinity, since
Hi1— Ho= O(x) in that case. NeverthelessGP — G1 = O(x?), which happens in many interesting applications,
then H1 — Ho = O(x?) fulfills the trace class condition in dimensian= 2, and this is precisely the framework
of [1].

The first purpose of this Note is to explain how to define relative determinants in the general case. We will
proceed as in [2], where long range perturbations of thdiiaa Laplacian were considered, using Koplienko’s
regularization [9] which consists in replacigfg H1) — f (Hop) by

i1
[f(Ho)), = f(H) = Y == f(He)e=0, He=Ho+e(H1— Ho)
p e j!de/
J:

for a suitablep. Before stating our first theorem, we introduce two other notations; we define the volume
density ¢, naturally associated with the principal symbal of H,, that is the density associated with the
riemannian metric defined by, in the fibers of7*X. In particular, on{x < ¢}, we have g@./dugo = det(l +
eh1(x)"1h%x))~Y/2. We can then define

[dpelp =dur— Y j110] duseje=o.
i<p
Note that both f(H,)]p and[du.]p are independent of; these notations simply reflect the fact that they are
defined by Taylor expansions of functionseof
Theorem 1. Let G°, G be two asymptotically hyperbolic metrics which coincide at infinity. Then
(i) for all p > n and all f in the Schwartz spac¢f (H;)]p is trace class. Furthermore there exists a unique
& € §'(R) which vanishes o—o0, 0) and such that

(& ) =t[f(H]), feS®).
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We call&, the generalized scattering phase of orger
(i) The distributiong, is a continuous function o((n — 1)2/4, o).
(i) The Laplace transform d&f, has a full asymptotic expansion as 0:

trfe” ] ~ 172 ) Jajt!, withao= r(g + 1) 2m) "o, / T
X

j=0
wherew,, is the volume of the unit ball &”.

This first theorem is a regularized form of the usual heat expansion on compact manifolds. It was proved in
the asymptotically Euclidian case @&¥ in [2], and it is new for asymptotically hyperbolic manifolds. Using the
methods of [2], we can now define the associated determinants of grder

Corollary 1. For all z ¢ [0, c0), the regularized zeta functidn(s) := tr[(H, —z) ~*1p is well defined foRe(s) > 1
and has a meromorphic continuation to the whole complex pl@pneregular ats = 0. Thus the following
regularized determinant

Dety(2) := exp(—¢.(0))

is defined and is holomorphic di\ [0, o).

In dimension: = 2, with H1 — Hg = O(x?), the definition of Det(z) of [11,1] is the above one withh = 1.
There are several reasons justifying thatjoetis indeed a determinant, fgr> 1. For instance, it is shown in [2]
that if H, = —A + ¢V onRY, with a long range potentid (y) = O((y)~%) for 8§ > n/p, then

Dety(z) = dep(1+ V(Ho —2) )

with det, (14 A) the usual Fredholm determinant defined foin the Schatten clas$, [12].

Our next theorem deals with the pointwise behaviokgf). This result is a natural extension of the one
announced in [5] where Froese and Hislop show$hét) = O(1"/?), for A 1 co. Here again, the use f prevent
them from considering the natural calleg — Ho = O(x), as explained before Theorem 1. The introductiogyof
will allow us to do so.

We have no room to explain how to prove pointwise expansiorig ohowever we point out that the proof
of the next theorem is based on the introduction of Isozaki—Kitada method [7,2] for asymptotically hyperbolic
manifold. The interest of this method is to construct a good microlocal long time approximatioiﬁ’t’zf”el/2 near
infinity. This approximation depends on the geometryXohear infinity and is of special interest for operators
Ho, H1which arenoncompactly supportgeerturbations of eachothers. This means that its main interest is to deal
with the difference betweeHy and Hy near infinity. Note moreover that, in scattering theory, one usually considers
the operatoi1 as a perturbation affp which is viewed as a model operator. Unlike the cas®’bivhere—A is a
canonical choice of model operator, here we have many possible choidés fince the manifold can be arbitrary
on a large compact set, we will choose an operaipwhich differs fromH; only in the neighborhood of infinity.

For instance, as the curvature associated @itfis asymptotically—1, one can consider an operafé associated
with a metric of constant curvature near infinity. The lattan be of interest in view of the recent result of [4].

Theorem 2. Let G be an asymptotically hyperbolic metric h Assume moreover that it is nontrappifi., that

for any compact sek C $*X, there existy" such thatp’(K) N K =@ for |t| > T, ¢' being the geodesic flgw
Then, for anyG® which coincides withG! at infinity and outside a neighborhood of infiniy, has a complete
asymptotic expansion ast oo
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£p(0) ~ A2 b3 by = (21) ", / (e Ip.
X

j=0

This theorem can be improved in several ways, which we explain below, however it shows anyway a much
precised result than the estimate of Froese—Hislopitandain interest is that we can consider natural conditions
on G! — G9 at infinity. Furthermore, there are very few results on scattering phases in this context [5,6] and ours
seems to be the first example of full asymptotic expansion of a scattering phase, for negatively curved manifolds
obtained, for instance, by metric perturbation of the hyperbolic sfi#ce

The main improvement of this theorem would be &bax the nontrapping coitébn. In this case, one only
expects to get a Weyl formula of the forgp(1) = bor™/2 + O(x""=1/2) This will be proved elsewhere, using a
refinement of the constructions of [3] combined with [4]. One could also relax the conditioH{fzatd Hg should
coincide on a large compact set. This would use the aigbf [3] combined with extra technical modifications,
such as some improved propagation estimates cofriongMourre theory, which will be proved separately.
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