Topology

The loop product for 3-manifolds

Hossein Abbaspour
Centre de mathématiques, École polytechnique, 91128 Palaiseau, France
Received 3 October 2003; accepted after revision 6 March 2004
Presented by Étienne Ghys

Abstract

Let M be a connected, closed, oriented and smooth manifold of dimension d. Let $L M$ be the space of loops in M. Chas and Sullivan introduced the loop product, an associative product of degree $-d$ on the homology of $L M$. In this Note we aim at identifying 3-manifolds with "non-trivial" loop products. To cite this article: H. Abbaspour, C. R. Acad. Sci. Paris, Ser. I 338 (2004). © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Le produit de Chas-Sullivan pour les variétés de dimension 3. Pour M, une variété connexe, orientée et lisse de dimension d, soit $L M$ l'espace des lacets libres de M. Chas et Sullivan ont défini un produit associatif de degré $-d$ sur l'homologie de $L M$. Dans cette Note on vise à identifier les variétés de dimension 3 qui ont des produits de Chas-Sullivan «non-triviaux». Pour citer cet article : H. Abbaspour, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Soit M une variété connexe, orientée et lisse de dimension d. Soit \mathbb{S}^{1} le cercle unité avec un point marqué, disons 1. Un lacet est une application continue $f: \mathbb{S}^{1} \rightarrow M$. L'espace $L M$ de tous les lacets dans M s'appelle l'espace des lacets libres de M. Cet espace n'est pas connexe. En fait, il y a une bijection entre les composantes connexes de $L M$ et les classes de conjugaison de $\pi_{1}(M) ; H_{0}(L M)$ est donc le groupe abélien libre engendré par les classes de conjugaison de $\pi_{1}(M)$. Dans [2], Chas et Sullivan ont défini un produit de degré $-d$ sur $H_{*}(L M)$, noté $\bullet: H_{i}(L M) \otimes H_{j}(L M) \rightarrow H_{i+j-d}(L M)$.

Théorème 0.1 (Chas-Sullivan). Le groupe abélien gradué $H_{*-d}(L M)$, muni du produit de Chas-Sullivan est une algèbre graduée commutative.

[^0]Considérons l'application $p: H_{*}(L M) \rightarrow H_{*}(M)$ induite par $f \mapsto f(1)$ et l'application $i: H_{*}(M) \rightarrow H_{*}(L M)$ induite par l'inclusion des lacets constants. On a $p \circ i=i d_{H_{*}(M)}$. Il existe donc une décomposition canonique $H_{*}(L M)=H_{*}(M) \oplus A_{M}$, où $A_{M}=\operatorname{Ker} p$.

Définition 0.2. On dit que M a des produits de Chas-Sullivan non-triviaux si la restriction de $\bullet a ̀ A_{M}$ est nontriviale.

Nous allons caractériser les variétés de dimension 3 ayant des produits de Chas-Sullivan non-triviaux. Pour cela on introduit la définition suivante :

Définition 0.3. Soit M une variété fermée de dimension 3. Alors M est algébriquement hyperbolique si le revêtement universel de M est contractible et $\pi_{1}(M)$ n'a aucun sous-groupe abélien de rang 2 .

Selon la conjecture de géométrisation de Thurston, les variétés algébriquement hyperboliques sont hyperboliques. Le résultat principal de cette note est le théorème suivant :

Théorème 0.4. Soit M une variété fermée et orientée de dimension 3.
(i) Si M est algébriquement hyperbolique alors M et tous ses revêtements finis ont des produits de Chas-Sullivan triviaux.
(ii) Si M n'est pas algébriquement hyperbolique alors M ou un revêtement double de M a des produits de ChasSullivan non-triviaux.

La preuve utilise la décomposition d'une variété de dimension trois en variétés premières [5], ainsi que la décomposition JSJ le long de tores [3,4]. Les détails se trouvent dans [1].

1. Introduction

Throughout this article M is a connected oriented smooth manifold and \mathbb{S}^{1} is the unit circle with a marked point 1. A loop in M is a continuous map $f: \mathbb{S}^{1} \rightarrow M$ and $L M$, the free loop space of M, is the space of all loops in M. Note that $L M$ is not connected and there is a bijection between the connected components of $L M$ and the conjugacy classes of $\pi_{1}(M)$; hence $H_{0}(L M)$ is the free Abelian group generated by the conjugacy classes of $\pi_{1}(M)$. The standard action of the unit circle on $L M$ induces an operator of degree $1, \Delta: H_{*}(L M) \rightarrow H_{*+1}(L M)$. In [2] Chas and Sullivan introduced a product of degree $-d$ on $H_{*}(L M)$ called the loop product and denoted $\bullet: H_{i}(L M) \otimes H_{j}(L M) \rightarrow H_{i+j-d}(L M)$, where d is the dimension of M. They proved the following:

Theorem 1.1. The graded Abelian group $H_{*-d}(L M)$ equipped with the loop product is a graded commutative algebra.

Let $p: H_{*}(L M) \rightarrow H_{*}(M)$ be the map induced by $f \mapsto f(1)$ and $i: H_{*}(M) \rightarrow H_{*}(L M)$ be the map induced by the inclusion of constant loops. We have $p \circ i=i d_{H_{*}(M)}$, and hence $H_{*}(L M)=H_{*}(M) \oplus A_{M}$, where $A_{M}=\operatorname{Ker} p$.

Definition 1.2. The manifold M has non-trivial loop products if the restriction of \bullet to A_{M} is non-trivial.
The aim of this Note is to characterize the closed 3-manifolds with non-trivial loop products. For stating our result we need the following definition.

Definition 1.3. A closed 3-manifold M is said to be algebraically hyperbolic if its universal cover is contractible and $\pi_{1}(M)$ has no rank 2 Abelian subgroup.

According to Thurston's geometrization conjecture, algebraically hyperbolic 3-manifolds are actually hyperbolic.

The following is the main result of this Note.
Theorem 1.4. Let M be a closed 3-manifold.
(i) If M is algebraically hyperbolic then M and all its finite covers have trivial loop products.
(ii) If M is not algebraically hyperbolic then M or some double cover of M has non-trivial loop products.

The detailed proof can be found in [1]. In this note we try to give a sketch of the proof and some examples of three manifolds with non-trivial loop products.

Notation. The based loop space of M is denoted ΩM. For $\alpha \in \pi_{1}(M), C_{\alpha}$ is its centralizer in $\pi_{1}(M)$ and $[\alpha]$ is its conjugacy class. For a conjugacy class $[\alpha],(L M)_{[\alpha]}$ denotes the corresponding connected component of $L M$. The projection on A_{M} is denoted $p_{A_{M}}$. For the spaces X and Y where $Y \subset X, \bar{Y}$ is the closure of Y in X.

2. Proof of part (i): algebraically hyperbolic 3-manifolds

Let M be an algebraically hyperbolic 3-manifold. Since M has contractible universal cover, it follows from the long exact sequence associated with the fibration $\Omega M \hookrightarrow L M \xrightarrow{p} M$ that each connected component of $L M$ has also a contractible universal cover. Moreover, one can prove that each connected component $(L M)_{[\alpha]}$ is an Eilenberg-Maclane space $K\left(C_{\alpha}, 1\right)$. In [1] we showed that C_{α}, for $\alpha \neq 1$, has homological dimension 1 by proving that C_{α} is a subgroup of \mathbb{Q}. This proves that $A_{M} \cong \bigoplus_{[\alpha] \neq[1]} H_{*}\left(K\left(C_{\alpha}, 1\right)\right)$ is concentrated in degree at most 1 , and therefore \bullet vanishes on A_{M}.

3. Proof of part (ii): non-algebraically hyperbolic 3-manifolds

The first step is to construct examples of non-trivial loop products for 3-manifolds with finite fundamental group, $S^{1} \times S^{2}$ and Seifert manifolds. Then we use the prime decomposition [5] or the torus decomposition [3,4] to construct homology classes in $L M$ with non-trivial loop products when M has a suitable non-trivial decomposition. Here we give some examples of such constructions. We refer the reader to [1] for more details.

3.1. S^{3}

Since S^{3} is a Lie group, there exits a homeomorphism $j: S^{3} \times \Omega S^{3} \rightarrow L S^{3}$. This gives rise to an isomorphism of algebras:

$$
\begin{equation*}
j_{*}:\left(H_{*}\left(S^{3}\right), \cap\right) \otimes\left(H_{*}\left(\Omega S^{3}\right), \times\right) \rightarrow\left(H_{*}\left(L S^{3}\right), \bullet\right), \tag{1}
\end{equation*}
$$

where \cap denotes the usual intersection product and \times is the Pontrjagin product.
It is known that $\left(H_{*}\left(\Omega S^{3}\right), \times\right) \cong \mathbb{Z}[x]$ where x has degree 2 . Let $\mu \in H_{3}\left(S^{3}\right)$ be the fundamental class of S^{3}. We set $y_{1}=j_{*}(\mu \otimes x)$ and $y_{2}=j_{*}\left(\mu \otimes x^{2}\right)$. Notice that $p\left(y_{i}\right)=0$, for $i \in\{1,2\}$, because the homology of S^{3} vanishes in dimension 5 and 7 respectively, thus $y_{i} \in A_{S^{3}}$. Under isomorphism (1), $y_{1} \bullet y_{2}$ corresponds to $(\mu \otimes x)\left(\mu \otimes x^{2}\right)=\mu \otimes x^{3} \neq 0$ hence $y_{1} \bullet y_{2} \neq 0$. Therefore S^{3} has non-trivial loop products.

Fig. 1. $S^{1} \times S^{2}$.

Fig. 2. $M=M_{1} \# M_{2}$.

3.2. $S^{1} \times S^{2}$

Let b and p be two distinct points in S^{2}. We choose $(1, p)$ as the base point of $S^{1} \times S^{2}$. The map $x \mapsto(x, p)$, $x \in \mathbb{S}^{1}$, gives rise to an element η of $\pi_{1}\left(S^{1} \times S^{2}\right)$.

Consider the map $\psi: \mathbb{S}^{1} \rightarrow S^{1} \times S^{2}$ defined by $\psi(x)=(x, b)$. Note that ψ as a loop with the marked point $(1, b)$, represents a homology class $\Psi \in H_{0}\left(\left(L\left(S^{1} \times S^{2}\right)\right)_{[\eta]}\right)$.

Let $\phi: S^{2} \rightarrow S^{1} \times S^{2}$ be the map defined by $\phi(y)=(1, y)$. The images of ψ and ϕ intersect exactly at $(1, b)$. We write $\phi\left(S^{2}\right)$ as a union of circles, any two of them having only the point $(1, p)$ in common. This gives rise to a one-dimensional family of loops in $S^{1} \times S^{2}$ (see Fig. 1). Note that the free homotopy type of the loops of this 1-dimensional family is the one of the trivial loop. One can compose the loops of this family with a fixed loop whose marked point is $(1, p)$ and modify their free homotopy type. Suppose that we have done this modification with a fixed loop which does not meet ψ and represents a non-trivial element $\mu \in \pi_{1}\left(S^{1} \times S^{2}\right)$ where $\mu \neq \eta$. This new 1-dimensional family of loops represents a homology class $\Phi \in H_{1}\left(\left(L\left(S^{1} \times S^{2}\right)\right)_{[\mu]}\right)$.

We prove that $p_{A_{S^{1} \times S^{2}}}(\Delta \Psi) \bullet p_{A_{S^{1} \times S^{2}}}(\Delta \Phi) \neq 0$ which implies that $S^{1} \times S^{2}$ has non-trivial loop products. Since $p_{A_{S^{1} \times S^{2}}}(\Delta \Psi) \bullet p_{A_{S^{1} \times S^{2}}}(\Delta \Phi)$ belongs to $H_{0}\left(L\left(S^{1} \times S^{2}\right)\right)$, and hence it can be expressed as a sum of conjugacy classes with +1 or -1 as the coefficients. Indeed it equals $\pm[\eta \mu] \pm[\eta] \pm[\mu] \pm[1]$. Since $1, \eta$ and μ are distinct therefore three terms out of four are distinct and hence there cannot be a complete cancellation.

3.3. Connected sums

Proposition 3.1. Suppose that $M=M_{1} \# M_{2}$ and $\pi_{1}\left(M_{i}\right) \neq 1, i=1,2$. Then M has non-trivial loop products.
Let $\Sigma \subset M$ be the 2 -sphere separating the two components M_{1}^{0} and M_{2}^{0}, where M_{k}^{0}, for $k \in\{1,2\}$, is M_{k} with a ball removed. Just like Section 3.2, the 2-sphere Σ gives rise to a 1-dimensional family of loops which have the same marked point $p \in M$. We set p to be the base point of M (Fig. 2). The loops in this 1-dimensional family have the free homotopy type of the one of the trivial loop. In order to modify their free homotopy type, one can compose the loops of this 1-dimensional family with a fixed loop whose marked point is p. Suppose that we have done this modification using a fixed loop γ (Fig. 2) which represents a non-trivial element $h \in \pi_{1}(M)$. The new 1-dimensional family of loops represents a homology class $\Phi \in H_{1}\left((L M)_{[h]}\right)$.

Now consider a simple smooth curve $\psi: \mathbb{S}^{1} \rightarrow M$ which intersects Σ exactly at 2 points and has the free homotopy type $\left[x_{1} x_{2}\right]$ where $x_{i} \neq 1 \in \pi_{1}\left(M_{i}\right), i=1,2$ (Fig. 2). Note that $\pi_{1}(M)=\pi_{1}\left(M_{1}\right) * \pi_{1}\left(M_{2}\right)$ and $x_{1} x_{2}$ is regarded as an element of this free product. We choose this curve so that it does not intersect γ. As a loop, ψ represents a homology class $\Psi \in H_{0}\left((L M)_{\left[x_{1} x_{2}\right]}\right)$. We claim that there exist some choices of x_{1}, x_{2} and h such that $p_{A_{M}}(\Delta \Psi) \bullet p_{A_{M}}(\Delta \Phi) \neq 0 \in H_{0}(L M)$.

In expanding $p_{A_{S^{1} \times S^{2}}}(\Delta \Psi) \bullet p_{A_{S^{1} \times S^{2}}}(\Delta \Phi)$ we get eight terms. By passing to mod 2 only two terms remain, namely $\left[x_{1} x_{2} h\right]$ and $\left[x_{2} x_{1} h\right]$. Now we must show that there exist choices of h such that these two conjugacy classes are different. Indeed $h=x_{1} x_{2}$ is a convenient choice since

$$
\left[x_{1} x_{2} h\right]=\left[x_{1} x_{2} x_{1} x_{2}\right] \quad \text { and } \quad\left[x_{2} x_{1} h\right]=\left[x_{2} x_{1} x_{1} x_{2}\right]=\left[x_{1}^{2} x_{2}^{2}\right]
$$

and the reduced words $x_{1} x_{2} x_{1} x_{2}$ and $x_{1}^{2} x_{2}^{2}$ are cyclically different.

3.4. Manifolds containing non-separating tori

Proposition 3.2. Suppose that M is a closed oriented 3-manifold which contains a non-separating two sided π_{1}-injective 2-torus T. Then M has non-trivial loop products.

Let $\phi: S^{1} \times S^{1} \rightarrow T \subset M$ be a homeomorphism. We set $\phi(1,1)$ as the base point of M. Consider the onedimensional family of loops ϕ_{t} defined by $\phi_{t}(s)=\phi(t, s)$ (longitudes of T in Fig. 3). This 1-family of loops represents a homology class Φ in $H_{1}\left((L M)_{[h]}\right)$, where h is the element of $\pi_{1}(M)$ represented by ϕ_{1}.

Now consider a closed simple curve $\psi: \mathbb{S}^{1} \rightarrow M$ which meets T transversally at exactly one point $\phi(1,1)$. Note that ψ represents an element $g \in \pi_{1}(M)$ and also gives rise to a homology class $\Psi \in H_{0}\left((L M)_{[g]}\right)$.

We show that $p_{A_{M}}(\Delta \Psi) \bullet p_{A_{M}}(\Delta \Phi) \neq 0 \in H_{0}(L M)$. Similar to $S^{1} \times S^{2}$ we have $p_{A_{M}}(\Delta \Psi) \bullet p_{A_{M}}(\Delta \Phi)=$ $\pm[g h] \pm[h] \pm[g] \pm[1]$.

To prove the claim, it is sufficient to show that [1], $[h]$ and $[g]$ are distinct. Since T is π_{1}-injective then $[h] \neq 1$. Note that the loop ψ intersects T exactly at one point hence the intersection product of the two homology classes (in M) that ψ and T represent are non-trivial and in particular the homology classes are non-trivial, therefore $[g] \neq[1]$. A similar argument shows that $[g] \neq[h]$.

3.5. Manifolds with a hyperbolic factor

Proposition 3.3. Let M be a 3-manifold which contains a separating two sided π_{1}-injective torus T. Suppose that $M \backslash T$ has two connected components M_{1} and M_{2} such that:
(i) \bar{M}_{1} has a hyperbolic interior with finite volume.
(ii) Either M_{2} has a complete hyperbolic structure of finite volume, or else \bar{M}_{2} is a Seifert manifold and $\bar{M}_{2} \neq S^{1} \times S^{1} \times[0,1]$.

Then M has non-trivial loop products.

Let $\phi: S^{1} \times S^{1} \rightarrow T \subset M$ be a homeomorphism. We choose $\phi(1,1)$ as the base point. Just like the previous case, ϕ gives rise to a one-dimensional family of loops $\phi_{t}, t \in S^{1}$ (longitudes of T in Fig. 4). This 1-family of loops represents a homology class $\Phi \in H_{1}\left((L M)_{[h]}\right)$, where $h \in \pi_{1}(M)$ is the element represented by ϕ_{1}.

Now consider a simple smooth curve $\psi: \mathbb{S}^{1} \rightarrow M$ which intersects T exactly at 2 points and it has the free homotopy type $\left[x_{1} x_{2}\right]$ where $x_{i} \in \pi_{1}\left(M_{i}\right), i=1,2$. Note that $\pi_{1}(M)=\pi_{1}\left(\bar{M}_{1}\right) *_{\pi_{1}(T)} \pi_{1}\left(\bar{M}_{2}\right)$ and $x_{1} x_{2}$ is regarded as an element of this amalgamated free product.

As a loop ψ represents a homology class $\Psi \in H_{0}\left((L M)_{\left[x_{1} x_{2}\right]}\right)$. We claim that there exist choices of x_{1}, x_{2} and h such that $p_{A_{M}}(\Delta \Psi) \bullet p_{A_{M}}(\Delta \Phi) \neq 0 \in H_{0}(L M)$.

In computing $p_{A_{S^{1} \times S^{2}}}(\Delta \Psi) \bullet p_{A_{S^{1} \times S^{2}}}(\Delta \Phi)$ we get eight terms. By passing to mod 2 only two terms survive, namely $\left[x_{1} x_{2} h\right]$ and $\left[x_{2} x_{1} h\right]$. Now we must show that there are some choices of x_{1}, x_{2} and h such that these two

Fig. 3. Non-separating torus T.

Fig. 4. Separating torus T.
conjugacy classes are different. The following lemma gives some sufficient conditions so that $\left[x_{1} x_{2} h\right]$ and $\left[x_{2} x_{1} h\right]$ are distinct. We refer the reader to [1] for the proof of this lemma.

Lemma 3.4. Suppose that G_{1}, G_{2} and H are three groups and $H=G_{1} \cap G_{2}$. Let $x_{1} \in G_{1} \backslash H$ and $x_{2} \in G_{2} \backslash H$ and $h \in H$ such that:
(a) $x_{1}^{-1} H x_{1} \cap H=1$,
(b) $x_{2} h \neq h x_{2}$.

Then $x_{1} x_{2} h$ and $x_{2} x_{1} h$ are not conjugate in $G_{1} *_{H} G_{2}$.
In our case $G_{i}=\pi_{1}\left(\bar{M}_{i}\right), i=1,2$, and $H=\pi_{1}(T)$. Since \bar{M}_{1} has a hyperbolic interior of finite volume, $\pi_{1}(T)$ consists of parabolic elements of $\operatorname{PSL}(2, \mathbb{C})$ with a common fixed point. Then $x_{1}^{-1}\left(\pi_{1}(T)\right) x_{1} \cap \pi_{1}(T)=1$ for $x_{1} \in \pi_{1}\left(\bar{M}_{1}\right) \backslash \pi_{1}(T)$ since conjugation with an element outside of H changes the fixed point. Therefore there exists a choice of x_{1}.

If \bar{M}_{2} has a hyperbolic interior with finite volume then it follows from the same reasoning as before that there is a choice of x_{2} so that (a) is satisfied. If \bar{M}_{2} is a Seifert manifold, all we have to do it to modify the embedding ϕ so that h is not in the center of $\pi_{1}\left(\bar{M}_{2}\right)$ which is generated by a power of the normal fiber. Therefore under the hypothesis above there are choices of x_{1}, x_{2} and y such that the conditions of Lemma 3.4 are satisfied.

References

[1] H. Abbaspour, On string topology of 3-manifolds, Preprint, math.GT/0310112.
[2] M. Chas, D. Sullivan, String topology, Preprint, math.GT/9911159.
[3] W. Jaco, P. Shalen, Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc. 21 (1979) 220.
[4] K. Johannson, Homotopy Equivalence of 3-Manifolds with Boundaries, in: Lecture Notes in Math., vol. 761, Springer-Verlag, Berlin, 1979.
[5] J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962) 1-7.

[^0]: E-mail address: habbaspour@math.polytechnique.fr (H. Abbaspour).
 1631-073X/\$ - see front matter © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
 doi:10.1016/j.crma.2004.03.004

