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Abstract

A metric spaceX is said to beabsolutely Lipschitz extendahleevery Lipschitz functionf from X into any Banach space
Z can be extended tany containing spac& 2 X, where the loss in the Lipschitz constant in the extension is independent of
Y, Z, and f. We show that various classes of natural metric spaces are absolutely Lipschitz extefalahikethis article:
J.R. Leg, A. Naor, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
0 2004 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Sur la propriété d'extension lipschitzienne absolue. On dit qu'un espace métriqu& a la propriété Extension
lipschitzienne absolusi pour tout espace de Bana@h toute fonction lipschitzienng de X dansZ peut étre étendue a
tout espace métriqu& contenantX, avec une perte dans la constante de Lipschitz de I'extension qui ne dépend pas du choix
deY, Z et f. Nous montrons que plusieurs classes naturelles d’espaggmjues ont la propriété d’extension lipschitzienne
absoluePour citer cet article: J.R. Leg, A. Naor, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
0 2004 Published by Elsevier SAS on behalf of Académie des sciences.

Let(Y,dy), (Z,dz) be metric spaces, and for eve¥yC Y, denote by (X, Y, Z) the infimum over all constants
K such that every Lipschitz functiofi: X — Z can be extended to a functiof: ¥ — Z satisfying||f||up <
K|l fllLip- (If no suchk exists, we set(X, Y, Z) = co.) We also define(Y, Z) = supe(X, Y, Z): X C Y} and for
every integen, e, (Y, Z) =supe(X,Y,Z): X CY, |X|<n}.

Estimatinge(Y, Z) is a classical and fundamental problem that has attracted a lot of attention due to its intrinsic
interest and applications to geometry and approximation theory. It is a classical fact that for every metri¢, space
e(Y, {x) =1, and Kirszbraun’s famous extension theorem [8] states that wheHg\eand H, are Hilbert spaces,
e(H1, Hy) = 1. We refer to the books [2,16] for a detailed account of the e&akeZ) = 1 and list below three
results which deal with the cag€Y, Z) > 1, when the target spacgis a Banach space. In what follows,is a
universal constant.
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T1. (Johnson, Lindenstrauss and Schechtman [7]) For every metric Bjgaxwkevery Banach spa&g ¢, (Y, Z) <
Clogn.

T2. (Johnson, Lindenstrauss and Schechtman [7]) For elxeliynensional normed spadé and every Banach
spaceZ, e(Y, Z) < Cd.

T3. (MatouSek [12]) For every metric trdeand every Banach spaée (T, Z) < C.

In this Note we observe a new phenomenon underlying these theorems which we referabsakite
extendability—the notion that for some spacé&s Lipschitz functionsf from X into any Banach spac& can
be extended t@ny containing spac& 2 X, where the loss in the Lipschitz constant is independerif, of.,
and f, and thus depends only ox. To this end, let us define, for a metric spacgethe absolute extendability
constant aeX) by

ae(X) =suple(X,Y, Z): Y 2 X, Z a Banach spade

If ae(X) < oo, we say thalX is absolutely extendabl@dditionally, for a family of metric spaces, let us define
ag(M) = supy oq a&(X) to be a uniform bound on the exidability of metrics inM. As far as we are aware, the
only previously known families of absolutely extendable metrics had such a property for a “trivial” reason; these
are the cases whexiis an absolute Lipschitz retract or when the family consists of finite metrics of uniformly
bounded cardinality (it is not too difficult to see that (T1) is true whemlégreplaced by:).

In order to state our results, let us introduce some notationGLet(V, E) be a countable graph with edge
lengths in[0, co]. Denote byX (G) the one-dimensional simplicial complex that arises fréry replacing every
edgee of G by an interval whose length is equal to thateoWe now define the set of metrics supported@®@n
denoted(G), as the set of all subsets af(G) for all possible non-negative lengths on edges;ofFor a family
of graphsF, let (F) = Jsc £ (G). Finally, recall that theloubling constanbf a metric space&X, denotedi(X),
is the infimum over all numbers such that every ball ik can be covered by balls of half the radius. When
A(X) < 00, one says thaX is doubling

Theorem 1. The following extension results hold true

(1) For afamily of finite graphsF, ae({(F)) < oo if and only if (¥) does not contain all finite metrics.
(2) If M is a two-dimensional Riemannian manifold of geguthen for everyX C M, ag(X) < Cg.

(3) For every metric spac&, we have agX) < ClogA(X).

(4) For everyn-point metric space&X, ae(X) < C%-

Observe that (2) implies that for every planar gra@phae({G)) < C, which improves (T3). Additionally since
anyn-point metric space is isometrically embeddable inmpact two-dimensional Riemannian manifold of genus
O(n3), in (2) aboveze(M) must tend to infinity with the genus af. Since log.(X) = O(logn) for any n-point
metric spaceX, and logh(X) = O(d) wheneverX is a subset of som&-dimensional normed space, (3) unifies
and generalizes (T1) and (T2). Finally, it iaF that (4) improves on (T1) by a factor of log log

In what follows we will sketch the main steps in the proof of Theorem 1. In particular, in the ensuing arguments
we will ignore all measurability assumptions. We referour upcoming paper [10] for detailed proofs and
additional results.

Let (Y, d) be ametric space arta subspace df. For the purpose of proving extension results, we may assume
thatX is closed. Le{2, F, 1) be a measure space andfix> 0. We shall say that a functiok : @ x Y — [0, c0)
is a K-gentle partition of unity with respect t& if for everyx € Y \ X [, ¥ (w,x) du(w) =1, for everyw € Q
andx € X, ¥(w, x) =0, and there exists a mappipg 2 — X such that for every, ye Y,

/d(y(a»,x) @ (w,x) = ¥ (o, y)| du(w) < Kd(x, y).
Q
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Let Z be a Banach space, arffd X — Z a Lipschitz function. We extend to a functionf : ¥ — Z by defining
forxeY\ X, f(x)= Jo [ (7 (@)¥ (o, x) du(w). Itis not difficult to check that th& -gentle condition ensures
that ||f||Lip < 3K | fliLip- All the statements in Theorem 1 actually producegentle partitions of unity for the
appropriate value ok .

Stochastic decompositionWe construct gentle partitions of unity bydirproducing an appropriate distribution
over partitions ofY. We say that(2, Pr, {I"'(-), ¥ (-)}ier) iS astochastic decomposition &f with respect toX
if I is some index set2, Pr) is a probability space, for every € Q, {I"'(w)}ic; is a partition ofY and for
everyi e I, y':Q — X is a function such that for ab € Q, d(y! (w), I'' (w)) < 2d(X, ' (w)). For A > 0
the decomposition is said to b&-bounded if for everyw € Q andi € I, diam(I" (w)) < A. A A-bounded
decomposition is calle¢k, §)-padded if for every € Y such that/(x, X) <A, Pr@i e I s.t.d(x, X\ ' (w)) >
cA) = 8.

Since we are interested in bounding the absoéxtendability constant of a metric spacewe need to impose
intrinsic geometric restrictions ok which ensure thagverysuper-spac& 2 X admits an appropriate stochastic
decomposition with respect 6. This is a achieved via the following partition extension lemma.

Lemma 2 (Partition extension).et (Y, d) be a metric space ani a closed subspace &f. If X admits an(e, §)-
paddedA-bounded stochastic decompositigrith respect to itself, thenY admits an(, §)-padded(1+ 5)A-
bounded stochastic decomposition with respedt to

To prove Lemma 2 we argue as follows. Ler (-), v (-), Q, u)}ies be an(e, §)-paddedaA-bounded stochastic
decomposition o with respect to itself. For every pointe Y, letz, € X be such thad (x, 7,) < 2d(x, X). Now,
for everyw € Q andi € I, consider the set

M) =T'(wU{xeY: ;e I'(w) andd(x,1,) <eA/4).

Finally, for any pointr € Y \ | ;, I''(w), placex in a singleton setx}. It is not difficult to check that this yields
the required decomposition &f with respect taX.

We pass from padded decompositions to gentle partitions of unity as follows bet a closed subset of
such that for every € Z, Y admits an(e, §)-padded 2-bounded stochastic demposition with respect t&. We
claim that thert also admits %C—é-gentle partition of unity with respect t8.

Let ¢:Ry — Ry be any 2-Lipschitz map with supp) C [%,4] and ¢ = 1 on [1, 2]. Additionally, let
g'Ry > Ry besuchthag=00n[0,1], g=10n[2 00) andg(x) =x — 1 on[1,2]. For everyn € Z let
(R,, Pr,, {F,{(-), y,;'(-)},»d) be a Z-bounded stochastic decomposition Jofwith respect toX, and denote by
(2, ) be the disjoint union ofl x Q,},cz (Where the measure ahis the counting measure). For every Y
andw € Q, there is a uniqué € I for which x € Il (w), and we denoter) (x) =d(x,Y \ I (w)). For every
neZ, we,, i €l andx €Y set:

n
V.00 =g o785 ) oS ) o) and y.0) = i) @
where S(x) is a normalization factor ensuring thﬁg2 (i, w,x)du(i, ) = 1. It is possible to show that this
construction yields the required gentle partition of unity; we refer to [10] for the details.

The notion of a padded decomposition is motivated by recent advances in combinatorics and theoretical
computer science. Often in theoretical computer rezge one needs to analyze data with an inherent metric
structure, and constructing well behaved stochastic decompositions has proved itself to be extremely useful
in various algorithmic applications. Variants of this approach have appeared in numerous contexts; see for
instance [11,9,1]. The structural results of [9,14] imply that for every integédrG is a graph which does not
admit the complete grapki, as a minor, then for some constapt- 0, anyX € (G) admits aA-boundedc,, 1/2)-
padded stochastic decomposition with respect to itself (for extery0). Part (2) of Theorem 1 follows from this
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decomposition and a characterization (in terms of excluded minors) of graphs that can be realized on a surface o
bounded genus with no edge-crossings (see, e.g., [13]).

Additionally, for a family of graphsF, let mc(F) denote its closure under taking minors, i.e., the maximal
minor-closed family containing®. A deep theorem of Robertson and Seymour [15] states that (fF) does
not containall finite graphs, then there existse N such that all the graphs if exclude akK, minor. Since
contraction/deletion of an edge corresponds to weighting fay Orespectively, it follows thatF) = (mc(F)).
Thus if (F) does not contain all finite metrics, then certainly(F) does not contain all finite graphs. From the
above reasoning, it follows thae((F)) < oo, proving part (1) of Theorem 1. Part (3) of Theorem 1 is based on a
variant of a construction from [6] showing that(iX, &) is doubling then it admits a-boundedc/ logA(X), 1/2)-
padded stochastic decomposition with respect to itself, for gast0. Finally, part (4) of Theorem 1 follows from
the decomposition of [3] and the improved analysis of [4,5]. We refer to the upcoming paper [10] for a detailed
account of these constructions and variants thereof, dfaveddditional extension theorems based on different
notions of stochastic metric decomposition. In particular, in [10] we discuss results analogous to Theorem 1 in
which the target space is not a Banach space, e.g., CAT(0) and related spaces.
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