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Abstract

We consider random walks dh in a random medium witf—L, ..., —1,0, +1} as possible jumps, whete > 1 is fixed.
When the environment is defined by a Gibbs measure on a $ub&fihite type, we show a dichotomy in the recurrent case
between the pointwise functional CLT and the slow behavior described by Sinai. In the transient cases and under natural inte-
grability conditions, we prove thealidity of the averaged CLTTo cite thisarticle: J. Bremont, C. R. Acad. Sci. Paris, Ser. |
338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Comportement des marches aléatoires sur Z en milieu Gibbsien. Nous étudions des marches aléatoiresean milieu
aléatoire ave¢—L, ..., —1,0,+1} comme sauts possibles, &> 1 est fixé. Pour un environnement défini par une mesure de
Gibbs sur un sous-shift de type fini, nous montrons dans le cas récurrent une dichotomie entre le TCL fonctionnel ponctuel et
le comportement lent décrit par Sinaiails les cas transients et sous des conditiing2grabilité natures, nous montrons la
validité du TCL en moyenndPour citer cet article: J. Bremont, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Presentation

Random walks in random media appear in the modelisaifdhe statistical homogeneity properties of a solid
where a diffusion takes place (see [2]). We consider a mod&l with a stationary and ergodic environment and
when the possible jumps form a set of consecutive integees{—L, ..., —1,0,+1}, whereL > 1 is fixed. Let
(£2, F, u, T) be an ergodic and invertible dynamical system, wh@eF, ) is a probability space anfl is an
invertible transformation, measurable as well7as!. Let then(p.).c4 be a family of positive random variables
on (2, F) verifying } °__ , p. =1, n-as, and such that there exists O with:Vz € A,z #0, p; > &.

Fixing w € §2, we introduce the Markov chaitk,(w)),>0 on Z with &(w) = 0 and the transition laws:
P§En1(w) =x + 2 | & (w) = x) := p,(T*w), Vx € Z, Yz € A. The “quenched problem” is to describe the
behavior of(&, (w)),>0 with Py’-probability one, foru-almost everyy.
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This model has been widely studied whén= 1. See [12,4] or [5] for a detailed review. The general case
L > 1 was considered in [4] and the aim of this paper is to bring some completeness to this study by considering
environmentss2, F, u, T) of Gibbs type. We first imbduce some definitions and recall a few results.
For1<i<L,seta; =(p—; +---+ p—r)/p1 and define the random matrM of sizeL x L:

a --- ap-1 ar
1 ... 0 0
M:=|. . : :
o ... 1 0

The main Lyapunov exponept M, T) of M with respect tdl" is defined by:

R 1 n—1
y(M,T)= lim Zlog|T"*M---M|, p-as
n—+oo n
Denote also by andi respectively the unique positive random vector wijith|1 = 1 and the unique positive
random scalar such th&tV = ATV (see [4]). The minoration condition dp,).c 4 implies that log. is a bounded
map. We also havé logx du =y (M, T). The next result is detailed in [4] and can be seen as a particular case of
Key’s Theorem [10].

Theorem 1.1. The asymptotic behavior of the Random Walk is the following

(i) If y(M,T) <0, then &,(w) — 400, Py-as, iu-as.
(i) If y(M,T)=0, then —oo =liminf&, (w) < limsupé, () = +o0, Pg-as, u-as.
(i) If y(M,T) > 0, then &, (w) — —o0, P§-as, u-as.

We now present an extension of Sinai’s Theorem [11] on the existence of a slow behavior in the recurrent case
y(M,T)=0. A proof is given in [5], adapting the method of [12] whénr= 1. The limit law £ appearing in the
statement of the theorem was computed independently by Golosov [7] and Kesten [9]. We introduce the ergodic
sumss, (logh) = Y/25 T loga.

Theorem 1.2. Let £ be the law orR with densityd (x) = 2 375 (2;12; expl— (2k§1)2n|x|}, x eR.

Assume thay (M, T) = 0 and thatn—1/25, (log)) converges in law to a Brownian Motion with a diffusion
coefficiento? > 0. Then there exists a sequence of random varialfles(w)),>1 on (£2,F) such that
(azmn(a))),,>1 converges in law ta& and the sequence of random variablés(w) /(Iogn)2 — m, (w)) converges
to 0 in probability under the probabilit)ff2 Py du(w).

2. Gibbsian environments

We introduce the environments that we consider in the sequel. Fix an integ@rand let(2, 7, T, A) be a
bilateral subshift of finite type, wherE is the left shift and c {1, ..., d}” is described by a transition matrix
A of zero’s and one’s. An infinite woreb = (w;);cz is admissible if and only ifA(w;, w;+1) =1 for all i € Z.
The o-algebraF is induced on2 by the one generated by the cylinder sets{in .., d}%. We suppose that
(£2,F, T, A) is topologically mixing, that is some power dfhas positive components.

We now consider classes of regular functions @n Let § be the distance odl,...,d}” defined by
8(x,y) =2~N, whereN is the largest integer such that= y; for 0< |i| < N. Fork >0 andg: 2 — R, set
Var (@) = suplle(x) —o(y)], (x,y) € 2 x 2, 8(x,y) <27%}. Forp >0, letH, be the set of real functiong
defined on2 such thad - k” Var(p) < +oo.
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Forg € H3, the associated Gibbs measugds the uniquer -invariant probability measure dif2, F) realizing
the maximum in the Variational Principlé®(¢) = suph(1) + [@du | w = Tu}. For a general presentation of
Gibbs measures in the traditional Holderian context, we refer to [3].

A classical frame of construction of, consists in considering the unilateral substi#ft associated ta2.

A direct adaptation of the Bowen Lemma (Lemma 1.6 of [3]) gives thatdfH3, then there is) € H2 such that
¢ — ¥ + T depends only on the positive coordinates. Therefore supposing th&f> on £2’, one introduces
the transfer operataR, on the space of continuous functions @: R, (g)(x) = Zyeg,’ Ty=x e#Weg(y). Next,
R, admits a unique positive eigenfunctidn Moreoverh is regular if ¢ is regular and the corresponding
eigenvalue is €¢). The restriction ofu, to £2’ is then the unique invariant probability measuregef> Q(g) =
e—P(‘P)h—lRw (hg) which is a Markovian operator. We now present the central result of this paper.

Theorem 2.1. Let (£2,B,T, A) be a topologically mixing subshift of finite type with the Gibbs measure
associated to somg e Hz. Assume thatp_; /p1) € Hofor 1 <i < L.

() If y(M, T) =0, then the following dichotomy holds

— eitherv,-asw, under the measurBg a non-degenerated CLT is valid,

— or the hypotheses of Sinai’'s Theorem are verified.

In particular, if (M, T) = 0 and if for a p-periodic wordw € £2 the matrix(T?~1M --- M)(w) does not
havel as eigenvalue, theleg(A) is not a coboundary and we are in Sinai’s situation.

(i) If y(M,T) <0 and [( j;";(T—"x---T—lx))Z(Z;g(TP—lx---x))du < 400, then the Random Walk
verifies a pointwise Law of Large Numbers with a hon-zero drift in the right direction and a non-degenerated
annealed CLT.

(i) If y(M,T)>0and [} (T2 .x)—l)z(zltfl(rﬁ)\ - T7I0) 1 du < 400, then the Random Walk
verifies a pointwise Law of Large Numbers with a non-zero drift in the left direction and a non-degenerated
annealed CLT.

3. Proof of Theorem 2.1

A simple adaptation of the proof of Theorem 5.2 [df gives that if (p_;/p1) € H2 for 1 <i < L, then
logi € H». Then the Bowen Lemma gives the existence of functignand ¢ in H1 with f depending only
of the positive coordinates such that fog- f + g — Tg.

Assume now thay (M, T) = [logrdy, = 0. Asu has zero mean, we use the relativized opergatefined
in the introduction of the previous section. There exists a fundtief. [1] and [6]) on the unilateral subshife’
which is at least continuous (and therefore bounded) suchfteat — Qh. Consequently:

logh=h—TQh+ (g — Qh) —T(g — Qh).

Introducing theo -algebraF’ generated by the cylinder sets o2, we note thatl Q& is a version of the
conditional expectation of undery, with respect to the sub-algebral’ ~1F'. Therefore(T" (h — T Qh))n>ois
a sequence of reversed martingale differences with respéfttaF’), 0. Thus the following discussion holds:

— If vo{h — T Qh # 0} > 0, then one checks that the invariance principle holds with a positive variance for the
sequenceé?” (h — T Qh)),>0, See Hall and Heyde [8]. Thus the hypotheses of Sinai’s Theorem are verified.

— Ifh—TQh=0,thenlog. = (g — Qh) — T(g — Qh) is a bounded coboundary and one applies Theorem 4.5
of [4]. The pointwise functional CLT holds.

Whenw is p-periodic, that is ifl ?w = w, and if A = Ty /v, then(TP~IM - .- MV)(w) = V (w), which proves
the last assertion of (i).



898 J. Bremont/ C. R. Acad. Sci. Paris, Ser. | 338 (2004) 895-898

The transient caseg(M, T) # 0 with the integrability conditions of Téorem 2.1 are treated with similar
methods, using the existence of the absolutely continuous invariant measure for the random walk of the
environments viewed from the particle and the existence of harmonic coordinates. A presentation of these notions
and a proof are detailed in [5].00

Remark 1. Both cases of Theorem 2.1(i) are easily seen to be non-empty, for example Iakiry We also
mention that the dichotomy is not valid in genleaiad requires hypotheses on the environment5]nwe provide
an example withl. = 1 of a Sinai type behavior in the recurrent case but with a scaling in(loglog logn)®/2.
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