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Abstract

We consider random walks onZ in a random medium with{−L, . . . ,−1,0,+1} as possible jumps, whereL � 1 is fixed.
When the environment is defined by a Gibbs measure on a subshift of finite type, we show a dichotomy in the recurrent ca
between the pointwise functional CLT and the slow behavior described by Sinaï. In the transient cases and under na
grability conditions, we prove the validity of the averaged CLT.To cite this article: J. Bremont, C. R. Acad. Sci. Paris, Ser. I
338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Comportement des marches aléatoires sur Z en milieu Gibbsien. Nous étudions des marches aléatoires surZ en milieu
aléatoire avec{−L, . . . ,−1,0,+1} comme sauts possibles, oùL � 1 est fixé. Pour un environnement défini par une mesur
Gibbs sur un sous-shift de type fini, nous montrons dans le cas récurrent une dichotomie entre le TCL fonctionnel po
le comportement lent décrit par Sinaï. Dans les cas transients et sous des conditionsd’intégrabilité naturelles, nous montrons la
validité du TCL en moyenne.Pour citer cet article : J. Bremont, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Presentation

Random walks in random media appear in the modelisation of the statistical homogeneity properties of a so
where a diffusion takes place (see [2]). We consider a model onZ with a stationary and ergodic environment a
when the possible jumps form a set of consecutive integersΛ = {−L, . . . ,−1,0,+1}, whereL � 1 is fixed. Let
(Ω,F ,µ,T ) be an ergodic and invertible dynamical system, where(Ω,F ,µ) is a probability space andT is an
invertible transformation, measurable as well asT −1. Let then(pz)z∈Λ be a family of positive random variable
on (Ω,F) verifying

∑
z∈Λ pz = 1, µ-as, and such that there existsε > 0 with: ∀z ∈ Λ, z �= 0, pz � ε.

Fixing ω ∈ Ω , we introduce the Markov chain(ξn(ω))n�0 on Z with ξ0(ω) = 0 and the transition laws
Pω

0 (ξn+1(ω) = x + z | ξn(ω) = x) := pz(T
xω), ∀x ∈ Z, ∀z ∈ Λ. The “quenched problem” is to describe t

behavior of(ξn(ω))n�0 with Pω
0 -probability one, forµ-almost everyω.

E-mail address:Bremont@cmla.ens-cachan.fr (J. Bremont).
1631-073X/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2004.03.030
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This model has been widely studied whenL = 1. See [12,4] or [5] for a detailed review. The general c
L � 1 was considered in [4] and the aim of this paper is to bring some completeness to this study by con
environments(Ω,F ,µ,T ) of Gibbs type. We first introduce some definitions and recall a few results.

For 1� i � L, setai = (p−i + · · · + p−L)/p1 and define the random matrixM of sizeL × L:

M :=




a1 · · · aL−1 aL

1 · · · 0 0
...

. . .
...

...

0 · · · 1 0


 .

The main Lyapunov exponentγ (M,T ) of M with respect toT is defined by:

γ (M,T ) = lim
n→+∞

1

n
log

∥∥T n−1M · · ·M∥∥, µ-as.

Denote also byV andλ respectively the unique positive random vector with‖V ‖1 = 1 and the unique positiv
random scalar such thatMV = λT V (see [4]). The minoration condition on(pz)z∈Λ implies that logλ is a bounded
map. We also have

∫
logλdµ = γ (M,T ). The next result is detailed in [4] and can be seen as a particular ca

Key’s Theorem [10].

Theorem 1.1. The asymptotic behavior of the Random Walk is the following:

(i) If γ (M,T ) < 0, then: ξn(ω) → +∞, Pω
0 -as,µ-as.

(ii) If γ (M,T ) = 0, then: −∞ = lim inf ξn(ω) < lim supξn(ω) = +∞, Pω
0 -as,µ-as.

(iii) If γ (M,T ) > 0, then: ξn(ω) → −∞, Pω
0 -as,µ-as.

We now present an extension of Sinaï’s Theorem [11] on the existence of a slow behavior in the recurr
γ (M,T ) = 0. A proof is given in [5], adapting the method of [12] whenL = 1. The limit lawL appearing in the
statement of the theorem was computed independently by Golosov [7] and Kesten [9]. We introduce the
sumsSn(logλ) = ∑n−1

k=0 T k logλ.

Theorem 1.2. LetL be the law onR with densityd(x) = 2
π

∑+∞
k=0

(−1)k

2k+1 exp{− (2k+1)2

8 π |x|}, x ∈ R.

Assume thatγ (M,T ) = 0 and thatn−1/2Sn(logλ) converges in law to a Brownian Motion with a diffusio
coefficientσ 2 > 0. Then there exists a sequence of random variables(mn(ω))n�1 on (Ω,F) such that
(σ 2mn(ω))n�1 converges in law toL and the sequence of random variables(ξn(ω)/(logn)2 − mn(ω)) converges
to 0 in probability under the probability

∫
Ω
Pω

0 dµ(ω).

2. Gibbsian environments

We introduce the environments that we consider in the sequel. Fix an integerd � 2 and let(Ω,F , T ,A) be a
bilateral subshift of finite type, whereT is the left shift andΩ ⊂ {1, . . . , d}Z is described by a transition matr
A of zero’s and one’s. An infinite wordω = (ωi)i∈Z is admissible if and only ifA(ωi,ωi+1) = 1 for all i ∈ Z.
The σ -algebraF is induced onΩ by the one generated by the cylinder sets on{1, . . . , d}Z. We suppose tha
(Ω,F , T ,A) is topologically mixing, that is some power ofA has positive components.

We now consider classes of regular functions onΩ . Let δ be the distance on{1, . . . , d}Z defined by
δ(x, y) = 2−N , whereN is the largest integer such thatxi = yi for 0 � |i| < N . For k � 0 andϕ :Ω → R, set
Vark(ϕ) = sup{|ϕ(x) − ϕ(y)|, (x, y) ∈ Ω × Ω, δ(x, y) � 2−k}. For p � 0, letHp be the set of real functionsϕ
defined onΩ such that

∑
k�0 kp Vark(ϕ) < +∞.
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Forϕ ∈H3, the associated Gibbs measureνϕ is the uniqueT -invariant probability measure on(Ω,F) realizing
the maximum in the Variational Principle:P(ϕ) = sup{h(µ) + ∫

ϕ dµ | µ = T µ}. For a general presentation
Gibbs measures in the traditional Hölderian context, we refer to [3].

A classical frame of construction ofνϕ consists in considering the unilateral subshiftΩ ′ associated toΩ .
A direct adaptation of the Bowen Lemma (Lemma 1.6 of [3]) gives that ifϕ ∈ H3, then there isψ ∈ H2 such that
ϕ − ψ + T ψ depends only on the positive coordinates. Therefore supposing thatϕ ∈ H2 on Ω ′, one introduces
the transfer operatorRϕ on the space of continuous functions onΩ ′: Rϕ(g)(x) = ∑

y∈Ω ′, T y=x eϕ(y)g(y). Next,
Rϕ admits a unique positive eigenfunctionh. Moreoverh is regular if ϕ is regular and the correspondin
eigenvalue is eP(ϕ). The restriction ofνϕ to Ω ′ is then the unique invariant probability measure ofg 	→ Q(g) =
e−P(ϕ)h−1Rϕ(hg) which is a Markovian operator. We now present the central result of this paper.

Theorem 2.1. Let (Ω,B, T ,A) be a topologically mixing subshift of finite type withνϕ the Gibbs measur
associated to someϕ ∈ H3. Assume that(p−i/p1) ∈H2 for 1 � i � L.

(i) If γ (M,T ) = 0, then the following dichotomy holds:
– eitherνϕ -asω, under the measurePω

0 a non-degenerated CLT is valid,
– or the hypotheses of Sinaï’s Theorem are verified.
In particular, if γ (M,T ) = 0 and if for a p-periodic wordω ∈ Ω the matrix(T p−1M · · ·M)(ω) does not
have1 as eigenvalue, thenlog(λ) is not a coboundary and we are in Sinaï’s situation.

(ii) If γ (M,T ) < 0 and
∫
(
∑+∞

n=1(T
−nλ · · ·T −1λ))2(

∑+∞
p=0(T

p−1λ · · ·λ))dµ < +∞, then the Random Wal
verifies a pointwise Law of Large Numbers with a non-zero drift in the right direction and a non-degen
annealed CLT.

(iii) If γ (M,T ) > 0 and
∫
(
∑+∞

n=0(T
nλ · · ·λ)−1)2(

∑+∞
p=1(T

−pλ · · ·T −1λ)−1)dµ < +∞, then the Random Wal
verifies a pointwise Law of Large Numbers with a non-zero drift in the left direction and a non-degen
annealed CLT.

3. Proof of Theorem 2.1

A simple adaptation of the proof of Theorem 5.2 of[4] gives that if (p−i/p1) ∈ H2 for 1 � i � L, then
logλ ∈ H2. Then the Bowen Lemma gives the existence of functionsf and g in H1 with f depending only
of the positive coordinates such that logλ = f + g − Tg.

Assume now thatγ (M,T ) = ∫
logλdνϕ = 0. As u has zero mean, we use the relativized operatorQ defined

in the introduction of the previous section. There exists a functionh (cf. [1] and [6]) on the unilateral subshiftΩ ′
which is at least continuous (and therefore bounded) such thatf = h − Qh. Consequently:

logλ = h − T Qh + (g − Qh) − T (g − Qh).

Introducing theσ -algebraF ′ generated by the cylinder sets onΩ ′, we note thatT Qh is a version of the
conditional expectation ofh underνϕ with respect to the sub-σ -algebraT −1F ′. Therefore(T n(h − T Qh))n�0 is
a sequence of reversed martingale differences with respect to(T −nF ′)n�0. Thus the following discussion holds:

– If νϕ{h − T Qh �= 0} > 0, then one checks that the invariance principle holds with a positive variance f
sequence(T n(h − T Qh))n�0, see Hall and Heyde [8]. Thus the hypotheses of Sinaï’s Theorem are veri

– If h − T Qh = 0, then logλ = (g − Qh) − T (g − Qh) is a bounded coboundary and one applies Theorem
of [4]. The pointwise functional CLT holds.

Whenω is p-periodic, that is ifT pω = ω, and ifλ = T ψ/ψ , then(T p−1M · · ·MV )(ω) = V (ω), which proves
the last assertion of (i).
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The transient casesγ (M,T ) �= 0 with the integrability conditions of Theorem 2.1 are treated with simila
methods, using the existence of the absolutely continuous invariant measure for the random walk
environments viewed from the particle and the existence of harmonic coordinates. A presentation of these
and a proof are detailed in [5].�
Remark 1. Both cases of Theorem 2.1(i) are easily seen to be non-empty, for example takingL = 1. We also
mention that the dichotomy is not valid in general and requires hypotheses on the environment. In[5], we provide
an example withL = 1 of a Sinaï type behavior in the recurrent case but with a scaling in logn(log log logn)3/2.
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