

Available online at www.sciencedirect.com

Comptes Rendus Mathematique

C. R. Acad. Sci. Paris, Ser. I 339 (2004) 99-102

Group Theory/Number Theory

Modularity of hypertetrahedral representations

Kimball Martin

Caltech 253-37, Pasadena, CA 91125, USA Received 15 January 2004; accepted after revision 11 May 2004 Available online 9 June 2004 Presented by Hervé Jacquet

Abstract

Let F be a number field, G_F its absolute Galois group, and $\rho: G_F \to \operatorname{GL}_4(\mathbb{C})$ an irreducible continuous Galois representation. Let \overline{G} denote the projective image of ρ in PGL₄(\mathbb{C}). We say that ρ is *hypertetrahedral* if \overline{G} is an extension of A_4 by the Klein group V_4 . In this case, we show that ρ is *modular*, i.e., ρ corresponds to an automorphic representation π of $\operatorname{GL}_4(\mathbb{A}_F)$ such that their *L*-functions are equal. This gives new examples of irreducible 4-dimensional *monomial* representations which are modular, but are not induced from normal extensions and are not essentially self-dual. *To cite this article: K. Martin, C. R. Acad. Sci. Paris, Ser. I 339 (2004).*

© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Modularité des représentations hypertétraèdrales. Soient F un corps de nombres, $G_F = \text{Gal}(\bar{F}/F)$ et $\rho: G_F \to \text{GL}_4(\mathbb{C})$ une représentation irréductible et continue. Soit \bar{G} l'image projective ρ . Nous appellerons une telle représentation hypertétraèdrale si \bar{G} est une extension de A_4 par le groupe de Klein V_4 . Nous démontrons qu'une représentation hypertéraèdrale est modulaire, i.e., il existe une représentation cuspidale π de $\text{GL}_4(\mathbb{A}_F)$ tel que $L(s, \rho) = L(s, \pi)$. Ceci donne de nouveaux exemples de représentations modulaires qui ne sont pas induites par des extensions normales et ne sont pas essentiellement auto-duales. *Pour citer cet article : K. Martin, C. R. Acad. Sci. Paris, Ser. I 339 (2004)*. © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let *F* be a number field, $G_F = \text{Gal}(\overline{F}/F)$ the absolute Galois group and $\rho: G_F \to \text{GL}_4(\mathbb{C})$ a continuous representation. Let $\overline{\rho}: G_F \to \text{PGL}_4(\mathbb{C})$ denote the composition of ρ with the standard projection from $\text{GL}_4(\mathbb{C})$ to $\text{PGL}_4(\mathbb{C})$ and let \overline{G} be the image of $\overline{\rho}$. We say that ρ is *modular* if there exists an automorphic representation π

E-mail address: kimball@caltech.edu (K. Martin).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2004.05.003

of $GL_4(\mathbb{A}_F)$ such that $L(s, \rho) = L(s, \pi)$. We then write $\rho \leftrightarrow \pi$. Thus at all unramified places v of F, $L(s, \rho_v) = L(s, \pi_v)$ and we write $\rho_v \leftrightarrow \pi_v$. Denote the restriction of ρ to a subgroup $Gal(\overline{F}/E)$ by ρ_E .

We are interested in the case where \overline{G} is an extension of A_4 by a group of order 4. Let C_n be the cyclic group of order *n* and V_4 be the Klein 4-group. The extensions of A_4 by C_4 and V_4 can be, for example, easily computed in the computer algebra package GAP. There are 6 possibilities for \overline{G} : $C_4 \times A_4$, $V_4 \times A_4$, $SL_2(\mathbb{F}_3) \times C_2$, $SL_2(\mathbb{F}_3) \rtimes C_2$, $V_4 \rtimes A_4$ and $V_4 \cdot A_4$, the unique group of order 48 containing both V_4 and A_4 as subgroups which is not a semidirect product of the two. In the first four cases, as will be shown below, ρ is necessarily reducible and therefore modular. If ρ is irreducible (so $\overline{G} = V_4 \rtimes A_4$ or $V_4 \cdot A_4$) then we will say that ρ is *hypertetrahedral*. (Note there exist reducible representations ρ for which $\overline{G} = V_4 \cdot A_4$.)

Theorem 1.1. Let *F* be a number field and ρ a hypertetrahedral representation of G_F . Then ρ is modular. There are infinitely many such representations with projective image $V_4 \cdot A_4$ which are not essentially self-dual.

Remark 1. A hypertetrahedral representation (irreducible and 4-dimensional) ρ is monomial, so Artin's conjecture is known for ρ . However, ρ is induced from a *non-normal* quartic extension K (i.e., from a degree one character of $\text{Gal}(\overline{F}/K)$) with no intermediate fields, so modularity does not follow from known automorphic induction results.

Remark 2. Recall that ρ is *essentially self-dual* if and only if the image of ρ is contained in $GO_4(\mathbb{C})$ or $GSp_4(\mathbb{C})$. The hypertetrahedral representations which are not essentially self-dual give new examples of modular representations. Irreducible solvable representations into $GO_4(\mathbb{C})$ were shown to be modular in [8]. Also, many cases are known for representations into $GSp_4(\mathbb{C})$, such as the symmetric cube of a modular 2-dimensional representation [4] or when the projective image is an extension of C_2^4 by C_5 [6]. But very little is known about non-self-dual representations.

Let us elaborate briefly on these remarks. Let $\rho: G_F \to \operatorname{GL}_4(\mathbb{C})$ be a (possibly reducible) representation such that \overline{G} is one of the 6 possible extensions of A_4 by C_4 or V_4 . Let L be the fixed field of ker (ρ) , N the fixed field of ker $(\bar{\rho})$ and \tilde{K}/F the extension corresponding to the quotient group A_4 . Let K be a subextension of \tilde{K}/F with $\operatorname{Gal}(\tilde{K}/K) = C_3$. Then K/F is a non-normal quartic extension with Galois closure \tilde{K} . Let E be the subextension of \tilde{K}/F corresponding to the subgroup V_4 . Then E/F is a normal cubic extension. Note that $\operatorname{Gal}(N/E)$ is a 2-group so $\operatorname{Gal}(L/E)$ is the direct product of a 2-group with a cyclic group of odd order. Thus, any irreducible representation of $\operatorname{Gal}(L/E)$ has dimension 2^j for some j.

Consequently, if ρ is reducible, then it is modular. For any 2-dimensional components are modular by [5] and [9]. Also, if ρ has an irreducible 3-dimensional constituent τ , then τ_E is reducible, i.e., τ is induced from the normal cubic extension *E*, whence modular by [1]. Hence we will assume that ρ is irreducible.

Now we claim that ρ is induced from K, i.e., that ρ_K contains a character. Assume otherwise. Since $\operatorname{Gal}(N/\widetilde{K}) = C_4$ or V_4 , any irreducible representation of $\operatorname{Gal}(L/\widetilde{K})$ has dimension 1 or 2. Thus ρ_K cannot be irreducible since the restriction $\rho_{\widetilde{K}}$ to a normal cubic extension is not. So we may assume that ρ_K is a sum of two irreducible 2-dimensionals. Then $\rho_{\widetilde{K}}$ is also sum of two irreducible 2-dimensionals, say $\rho = \sigma \oplus \tau$, and $\operatorname{Gal}(\widetilde{K}/F) = A_4$ acts transitively on on $\{\sigma, \tau\}$. Hence the stabilizer of σ in A_4 is a subgroup of index 2. But A_4 has no subgroups of index 2, a contradiction. This establishes Remark 1.

The Galois group $\operatorname{Gal}(\widetilde{K}/F) = A_4$ acts transitively on the 4 distinct characters occuring in $\rho_{\widetilde{K}}$. This implies that $\operatorname{Gal}(\widetilde{K}/F)$ cannot fix $\operatorname{Gal}(N/\widetilde{K})$ pointwise. However, for each of the four groups $C_4 \times A_4$, $V_4 \times A_4$, $\operatorname{SL}_2(\mathbb{F}_3) \times C_2$ and $\operatorname{SL}_2(\mathbb{F}_3) \rtimes C_2$, any group element fixes pointwise the normal subgroup of order 4. This shows that $\overline{G} = V_4 \rtimes A_4$ or $V_4 \cdot A_4$ (assuming ρ is irreducible).

Now we want to know when ρ will be not essentially self-dual. If ρ is induced from a normal extension, then it is modular by [1]. So we will assume it is not. Then we claim that ρ cannot be of symplectic type. Observe dimensionality requires that if $\Lambda^2(\rho)$ contains a character, it contains two (counting multiplicity), which implies that ρ is induced from a 2-dimensional representation, whence the claim. The case where $\overline{G} = V_4 \rtimes A_4$ yields examples of irreducible monomial 4-dimensional representations of orthogonal type, which are modular by [8]. However in the case where $\overline{G} = V_4 \cdot A_4$, we obtain below irreducible monomial representations ρ which are not of orthogonal type, whence not essentially self-dual. Then ρ is not a tensor product of two 2-dimensionals since its image does not lie in $\operatorname{GO}_4(\mathbb{C})$. Nor is ρ a symmetric cube lift of a 2-dimensional representation because \overline{G} is not a subgroup of $\operatorname{PGL}_2(\mathbb{C})$.

Example 1. Take the group G_{192} of order 192 generated by

$$\begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ -i & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \end{pmatrix}, \quad \text{and} \quad \begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

As this is solvable, it occurs as a Galois group over \mathbb{Q} by a theorem of Shafarevich [7] and has a hypertetrahedral representation ρ which is not essentially self-dual and not induced from a normal extension. Such examples exist of orders $192 \cdot k$, $k = 1, 2, 3, \ldots$ This can easily be seen by taking central products of G_{192} with cyclic groups.

2. Proof of Theorem 1.1

The proof of modularity is similar to Langlands' original tetrahedral argument [5], which relied upon normal cubic base change for GL_2 ([5]), the symmetric square lift of Gelbart and Jacquet from GL_2 to GL_3 [2], and the structure of A_4 . We use normal cubic base change for GL_4 , the exterior square of Kim from GL_4 to GL_6 ([3]), and the structure of \overline{G} , in a manner similar to the argument in [6].

As observed in the remarks following the theorem, we may assume that ρ is irreducible and $\overline{G} = V_4 \rtimes A_4$ or $V_4 \cdot A_4$. Let the extensions $L \supseteq N \supseteq \widetilde{K} \supseteq K \supseteq F$ and $\widetilde{K} \supseteq E \supseteq F$ be as in the previous section.

Lemma 2.1. The representations ρ_E and $\Lambda^2(\rho)$ are modular.

Proof. As remarked in the previous section, Gal(L/E) is a direct product of a 2-group P_2 with a cyclic group C of odd order. Therefore Gal(L/E) is nilpotent. By a theorem of Arthur and Clozel [1], all representations of nilpotent groups are modular. In particular ρ_E is modular.

We now show $\Lambda^2(\rho)$ is modular. First note $\Lambda^2(\rho)$ does not contain any characters because ρ cannot be symplectic, as mentioned above. Thus $\Lambda^2(\rho)$ cannot contain an irreducible 5-dimensional representation either. Any 2-dimensional representation inside $\Lambda^2(\rho)$ is modular by Langlands and Tunnell [5,9].

Now suppose $\Lambda^2(\rho)$ contains an irreducible τ of dimension 3 or 6. We know that all irreducible representations of Gal(L/E) have dimension a power of two because Gal(L/E) = $P_2 \times C$. Thus τ_E must be reducible, whence τ is induced from the normal extension E and therefore modular.

Finally, consider the case where $\Lambda^2(\rho)$ contains an irreducible 4-dimensional representation σ . Since there is a natural symmetric pairing $\Lambda^2(\rho) \times \Lambda^2(\rho) \to \Lambda^4(\rho)$, σ maps into $\text{GO}_6(\mathbb{C})$. The dimension of σ implies that its image lies in $\text{GO}_4(\mathbb{C})$. Hence σ is modular by [8].

Thus all irreducible components of $\Lambda^2(\rho)$ must be modular, so $\Lambda^2(\rho)$ is also. \Box

Let us say $\rho_E \leftrightarrow \Pi$. We claim that ρ_E is irreducible. Indeed, the irreducibility of ρ implies that $Gal(E/F) = C_3$ acts transitively on the irreducible components of ρ_E . This action has order dividing 3. Thus if there is more than one irreducible component of ρ_E , there must be three or a multiple thereof. However dim $\rho_E = 4$, so that is impossible. Therefore ρ_E is irreducible, whence Π is cuspidal.

Let $\delta = \delta_{E/F}$ be a non-trivial idele class character of $F^* \mathfrak{N}_{E/F}(\mathbb{A}_E^*) \setminus \mathbb{A}_F^* = \operatorname{Gal}(E/F) = C_3$. Base change results [1] tell us that there are precisely three cuspidal representations, $\pi_0, \pi_1 = \pi_0 \otimes \delta$ and $\pi_2 = \pi_0 \otimes \delta^2$, of $\operatorname{GL}_4(\mathbb{A}_F)$ whose base change to E is Π .

Lemma 2.2. There is a unique π_i such that $\Lambda^2(\pi_i) \leftrightarrow \Lambda^2(\rho)$.

Proof. All the representations $\Lambda^2(\pi_i)$ base change to $\Lambda^2(\pi_0 \otimes \delta^i)_E = \Lambda^2(\pi_0)_E$. They are all distinct because they have distinct central characters $\omega_{\Lambda^2(\pi_i)} = \omega_{\Lambda^2(\pi_0)} \delta^{2i}$. Therefore these are the only representations of W_F which base change to $\Lambda^2(\pi_0)_E$. We also know that $\Lambda^2(\rho)$ corresponds to some automorphic representation β on $GL_6(\mathbb{A}_F)$. But then $\beta_E = \Lambda^2(\pi_0)_E$ implies that β must equal some $\Lambda^2(\pi_i)$. \Box

Denote the π_i of the lemma by π . We claim now that in fact $\rho \leftrightarrow \pi$. It will suffice to show for all unramified places that $\rho_v \leftrightarrow \pi_v$. Say ρ_v has Frobenius eigenvalues $\{a, b, c, d\}$ and π_v has Satake parameters $\{e, f, g, h\}$. We want to show $\{a, b, c, d\} = \{e, f, g, h\}$. For a diagonal element D of GL₄, we have $\Lambda^2(D) = 1$ if and only if $D = \pm I$. Hence $\Lambda^2(\rho_v) \leftrightarrow \Lambda^2(\pi_v)$ implies $\{a, b, c, d\} = \pm \{e, f, g, h\}$. If they are equal, we are done. Assume therefore

$$\{a, b, c, d\} = -\{e, f, g, h\}.$$
(1)

Now we can use base change to *E*. In our projective image \overline{G} , any element cubed lies inside the normal subgroup of index 3, $\operatorname{Gal}(N/E)$. Thus any element of G(L/F) cubed lies inside $\operatorname{Gal}(L/E)$. In particular $Fr_v^3 \in \mathcal{O}_{Ew}$, where *w* is a prime of *E* above *v* and Fr_v is the Frobenius. Then $\rho_{v,E} \leftrightarrow \pi_{v,E}$ implies $\{a^3, b^3, c^3, d^3\} = \{e^3, f^3, g^3, h^3\}$. Combining this with (1) yields,

$$\{a^3, b^3, c^3, d^3\} = \{-a^3, -b^3, -c^3, -d^3\}.$$
(2)

Without loss of generality, assume $a^3 = -b^3$ and $c^3 = -d^3$. Then either $b = -\zeta_3 a$ or $d = -\zeta_3 c$, for otherwise a = -b, c = -d which would imply $\{a, b, c, d\} = \{e, f, g, h\}$. Let us say $b = -\zeta_3 a$. Then $\rho(Fr_v) \sim \text{diag}(a, -\zeta_3 a, c, d)$ so $\bar{\rho}(Fr_v) \sim \text{diag}(1, -\zeta_3, c/a, d/a)$ is an element of order divisible by 6 in $\overline{G} = \text{Im}(\bar{\rho}) \subseteq \text{PGL}_4(\mathbb{C})$. But \overline{G} has no elements of order 6, a contradiction! Therefore ρ is modular.

Acknowledgements

The author would like to thank his advisor, Dinakar Ramakrishnan, for suggestions and guidance throughout this work. He is also indebted to the GAP Group as many group and character computations were done in the initial stages of this work using the computer algebra package GAP.

References

- J. Arthur, L. Clozel, in: Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, in: Ann. of Math. Stud., vol. 120, Princeton University Press, 1999.
- [2] S. Gelbart, H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. École Norm. Sup. 11 (1979) 471– 542.
- [3] H. Kim, Functoriality for the exterior square of GL₄ and the symmetric fourth of GL₂, J. Amer. Math. Soc. 16 (2003) 139–183.
- [4] H. Kim, F. Shahidi, Functorial products for $GL_2 \times GL_3$ and functorial symmetric cube for GL_2 , C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 599–604.
- [5] R.P. Langlands, in: Base Change for GL(2), in: Ann. of Math. Stud., vol. 96, Princeton University Press, 1980.
- [6] K. Martin, A symplectic case of Artin's conjecture, Math. Res. Let. 10 (2003) 483-492.
- [7] J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of Number Fields, Springer-Verlag, 2000.
- [8] D. Ramakrishnan, Modularity of solvable Artin representations of GO(4)-type, Int. Math. Res. Not. (2002) 1-54.
- [9] J. Tunnell, Artin's conjecture for representation of octahedral type, Bull. Amer. Math. Soc. 5 (1981) 173–175.