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Abstract

In this Note we prove the following result. A fine log scheme over the complex numbers and its saturated have homeomorphic
Kato—Nakayama associated spaces. Moreover these spacestagisic as ringed spaces, either with the ring sheaf defined
by Kato—Nakayama, or with that defined by Ogus. In the defmmitibthese spaces, non-integnabnoids are involved, so that
the proof of the result is based on properties of nonnecessarily integral mohoidge this article: M. Cailotto, C. R. Acad.
Sci. Paris, Ser. | 339 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une Note sur les espaces de Kato—NakayamBans cette Note nous prouvons le resultat suivant. Un log schéma sur le
corps des nombres complexes et son saturé ont des espace®-diddayama associés qui sont homéomorphes. En plus, ces
espaces sont isomorphes en tant qu'espaces annelés, sdi éaisceau d’anneaux défini par Kato—Nakayama, soit avec le
faisceau d’anneaux défini par Ogus. Daaslé€finition de ces @sices on tilise des monoideson intégres, et la démonstation
utilise certaines proprtés des monoides non nécessairement integms. citer cet article: M. Cailotto, C. R. Acad. Sci.

Paris, Ser. | 339 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Introduction

We recall here the basic definition of the Kato—Nakayama spaces associated to a log analytic space (se
[1,2,5,3]). Using this ringed spaces feuitable fs (fine and saturatedglgpaces they define a Riemann—Hilbert
correspondence for a special class of tmgnections (with nilpant conditions). These results are then extended
by Ogus (see [6]) to the entire class of log connections using a more general ring sheaf on the Kato—Nakayame
space, whose construction is similar to the case of indexed algebras of Lorenzon (see [4]).

In this Note we compare the Kato—Nakama spaces associated to a fine fmare and to its saturated log space.

It turns out that they are homeomaorphic as topological spacesthey are isomorphic as ringed spaces using either
the Kato—Nakayama sheat?? or the Ogus sheaf, ®.
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This result is useful, for example, in the compiga of Kato—Nakayama spaces for base change in the
category of fs log schemes. It suggests also that digarithmic Riemann—Hilbert correspondences proved by
Kato—Nakayama and Ogus for (ideally smooth) fs log schemes cannot be extended directly to the category of fine
log schemes.

1. Kato—Nakayama'’s spaces
1.1. The Kato—Nakayama spg@e3]

Letrw: SlxR>o — C be the morphisni¢, r) — r¢ whereS? andR 3o have both the monoidal multiplicative
structure (notice thak > is not mtegraIJRg'Q0 = 0). Clearly this is a log structure on SgécCall T the log point

(SpecC), St xR>) and for any coherent log schemieoverC, whose underlying scheme is of finite type, define
the setX'°9 := Homc (7, X). If we have locally a chart ok modeled on a monoi#, we can see that'?9 is locally
a closed subset of the topological prodigh x Hom(P9, S1). This local definition for the topology globalizes to
give a topology orx'°9. There is, moreover, a canonical surjective morphigmx'°9 — X, which is continuous
and proper as map of topological spaces.

We refer to [2, § 3] and [6, §3.3] for the definitions of the sheaves of rifig& and &9 on x'°9,

1.2.

For example for X = SpecC[P ] with P a fine monoid, thenX'°9 = Homuon(P, R>o X sh =
Hompon(P, R>0) X HomMon(ng S for x € X'°9, rx(x) = 7 o x as morphismP — C. The topology is
the natural one, making'°9 into a locally compact space.

1.3.

The construction of Kato—Nakayama spacesgwtes with projective limits; moreover, jff: X — Y is a strict
morphism of coherent log schemes, then the natural diagyanf'°? = f o ry is a Cartesian square of topological
spaces. X is fs (fine and saturated, see [7]), then the fibetpht a pointx € X is a torsor under the product of
r(x) copies ofSt, wherer (x) is the rank of the characteristic shedf,”” = .7/ 0% atx.

2. Principal result

Theorem 2.1.Let X be a fine log scheme ovér. Then the canonical morphisay : X33 — X induces a homeo-
morphism of topological space§g: (xsaylog =, x1og Moreover, it induces an isomorphism of ringed spaces if
these spaces are endowed with the sheaves of mfé’adefined by Kato—Nakayama &)'(Og defined by Ogus.

For the proof, we need some preliminaries on non-integral monoids.

Definition 2.2.Let M be a monoid (not necessarily integral) anddéte a positive integer; we say thiatis quasi-

n-saturated if the commutative square givendayn = n o ¢ is Cartesian, where: M — M9P is the canonical
morphism andi: M — M (resp.M9% — M9P) means “multiplication by.”. We say thatM is quasi-saturated if it
is quasip-saturated for every primg (or equivalently quasi—saturated for any € N).

Let M(n) = M x._yo., M9 be the fiber product of the diagram -> M9 < M. Then M is quasin-
saturated if and only if the canonical morphigmc): M — M (n) is an isomorphism. Notice tha (r) is not
guasin-saturated in general; however, the canonical fmap)°: M9 — M (n)% is a section of the (group ex-
tended) second projection.

Remark 1. (i) If M is integral, it is quasiz-saturated (resp. quasi-gadted) if and only if it isn-saturated (resp.
saturated) in the usual sense (see [7]).

(i) If M is such thatM9 = 0, it is quasin-saturated (resp. quasi-saturated) if and only if it is uniquely
n-divisible (resp. uniquely divisible), i.e. if the multiplication layis an isomorphism (resp. for amy.
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Lemma 2.3.The inclusion of the category of quasisaturatedresp. quasi-saturateédnonoids in that of monoids
admits a left adjoint functor, that is for any monald there exists functorially a quagi-saturated(resp. quasi-
saturated monoidM”~958 (resp. M 953 such that

Hom(M" 93 py =~ Hom(M, P) (resp.Hom(M% P) = Hom(M, P))
for any quasin-saturated(resp. quasi-saturatednonoidP.

Proof. Let M be a (not necessarily integral) monoid; we define the quasiturated ofM by Mrmasat.—
lim;cnM(n') where the inductive system is defined foK j by n/ 7" x id: M(n') — M(n’/); and the quasi-
saturated oM by M953:=1im ,c v,y M (n) = Ii_r)n ne(.)) M98 where the inductive system in the first expression
is defined fom|m by (m/n) x id: M(n) — M(m). We see easily tha?”"95tjs quasin-saturated, that/95ais
quasi-saturated, and that the canonical morphigfas M 95tandM — M9 (notice thatM = M (1)) enjoy the
universal properties. In fact, e.g. for the second functor, we have(M&HR P) = lim ,,cy Hom(M (), P) and it

is enough to prove that for amythe map HonaM (n), P) — Hom(M, P) is a bijection. SinceP is quasi-saturated,
for any morphismp: M — P we have a unique extensign : M (n) — P such thatp, o (n,c) =¢. O

Remark 2. (i) If M is integral, the quasi-saturated (resp. quasi-saturated\pfare the usual onegs" 95at—
{meM%®|3i eN, m" e M) (resp.M5 = {m € M9 | 3n € N*, m" € M}) as submonoids af/9P.

(i) If M is such thatM9P = 0, so thatM (m) = M, then its quasit-saturated (resp. quasi-saturated) is given
by Mmasat— lim (M SmMS . 5 M5 ) (resp.MOsa= lim neqv, )y Ma Where M, = M for anyn and the
transition map\f,, — M,, for n|m is the multiplication byn /n).

Proposition 2.4. Let M be an integral monoidthen the morphism\/ — M3 induces a homeomorphism
(SpecC[MS3Y)lo9 _, (SpeaC[M])'°9 of topological spaces.

Proof. In fact we can identify thé&ato—Nakayama space as
(SpecC[M®)*® = Hom(T, SpeaC[M32Y) = Hom(M2 ST x R)

the canonical map being induced by the composition With> M52 If we take a morphism/ — ST x R>o we
can extend it taS using the fact tha$? is a group andR>o (as a multiplicative monoid) is a quasi-saturated
monoid (or equivalently a uniquely divisible monoid, sin@)% = 0). For X = SpecC[M] the topology in
X'99 js that induced as a closed subseXdfC) x Hom(M9P, S1): now the canonical morphisiis®— X is finite,

s0 XS3(C) — X (C) is finite and closed, and the topologies induced¥a{) x Hom(M9, S1) or by XS3{(C) x
Hom(M9P, S) coincide. O

Corollary 2.5. Let X be a fine log scheme, of finite type as scheme (lbheétale and finitgcanonical morphism
Xsa_, X induces a homeomorphisiisaylod — xlog,

Proof. In fact X admits locally a chark — SpedC[M] whereM is a fine monoid ands& is locally defined
as X xspeaciy) SpecC[MS4Y, so we can apply the proposition: from the Cartesian diagrankf8f; applying
(—)!°9 = Hom(T, —) we find a Cartesian diagram where on the right we have a homeomorphism.

Let X be afine log scheme, of finite type as scheme; we know that the canonical morSRisiisalog . xsat
is fibered in torsors under a product®¥; therefore the map : X'°9 — X is fibered in torsors under a product of
st times a finite group (depending on the point).

2.1. Theringed structures

The sheat?x of logarithmic sections is clearly isomorphic {&ysa (see [2, 1.4], [3, 5.6]), since it depends
only on.#;" which is isomorphic ta#;5,. We have a natural morphism of structural sheaﬁ'é’g — ﬁl)fsgat. The
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explicit descriptions (see [2, 3.2]) show immediately that it is an isomorphism, since all section®§ (resp.
1~ 10ysa) are identified with their image it¥’s. Since the Ogus ringed structure is constructed using the previous

ones (see [6, 3.3.2]), tensorized with thev ./, *"-graded algebrar,’? (see [6, ante 3.3.1] for the definition), the

~

canonical morphisn@ﬁg'(Og — 5)'(05%‘ is also an isomorphism. This complete the proof of the theorem.

3. Applications

3Ihlr"nany problems, base changes in the category of fs log schemes are involved, and they do not coincide with
the base change in the category of log schemes, or even in the category of fine log schemes. M fact, & Y
are morphisms of fine (resp. fs) log schemes, &nd ; Y is the fiber product in the category of log schemes,
then the fiber producx xfz Y (resp.X foS Y) in the category of fine (resp. fs) log schemegXsx 7 ¥)™ (resp.
(X xz Y)%¥). The following proposition simplifies in some @assthe computation of the Kato—Nakayama spaces
of a base change.

Proposition 3.1.Let X — Z < Y be morphisms of fs log schemes, and suppose that the fiber p@dugty in
the category of log schemes is fieeg. if one of the morphisms is integralhen(X x'$ 1109 = X109 x 155 ¥109,

Proof. The construction of Kato—Nakayanspaces commutes with the fiber product in the category of coher-
ent log schemes, so that we have x' 1)!°9 = ((X xz ¥)5309 = (X x; ¥)!99 = X100 x /104 ¥'°9 (the second
isomorphism holds becauséex z Y is integral). O

sl;%'e (Kato—Nakayama or Ogus) log Riemann—Hilbert correspondences cannot be extended directly to fine log
schemes, as the following example (suggested to me by A. Ogus) shows. Consider the Miayenerated by
a andb, subject to the relation®2= 2b. It is integral but not saturated ands®' is generated by andb — a
inside M9P; in other words, it is generated by two genera@nd subject to the relation@= 0 (the canonical
morphismM — MS3sends: to « andb to « + B). Then the log scheme Sp@jM]) is Spec¢C[X, Y]/ (X% —Y?))
(a pair of intersecting lines), while the log scheme $@$8/52Y) is Spe¢C[X, Z]/(Z2 — 1)) (a disjoint union of
two lines). In particular the categories of log connections are not equivalent. By contrast, the associated Kato—
Nakayama spaces are isomorphic.
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