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Abstract

We prove a rigorous version of the following heuristic statement: if, in a spin glass model, the extended Ghirlanda—Guerra
identities are valid, at given disger the distribution of the overlap of two configdions is discrete, and its support (the smallest
closed set that carries this distribution) is non-rand®mcite this article: G. Parisi, M. Talagrand, C. R. Acad. Sci. Paris,

Ser. | 339 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur la distribution des recouvrements a désordre donnéNous prouvons une version rigoureuse du fait suivant. Dans un
modele de verres de spins qui satisfait les identités de Ghil&@ulerra générales, a désordre donné, la distribution du recou-
vrement de deux configurations est discréte, et son support est non-al&doireiter cet article: G. Parisi, M. Talagrand,

C. R. Acad. Sci. Paris, Ser. | 339 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

The study of the mean field models for spin glasses at the level of theoretical physics has required the intro-
duction of a number of new concepts [2—4k$&pite recent progress, the rigorousifathematical) study of these
models remains very difficult.

One of the key features of the physical picture is that at low temperatures the system governed by a mean
field spin glass Hamiltonian decomposes spontaneously in series of ‘pure states’ (or valleys) with macroscopic
Gibbs weights. It is not easy to give a mathematical definition of what this means, and even harder to conceive a
program that could eventually lead to a rigorous proof of this fact. As of today, such a proof has been achieved
only in cases where there is a “one level of repganmetry breaking” situation, such as in thespin interaction
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model at a suitable temperature, where the pure state well separated from each other, and thus easier to
construct [5]. Whatever the precise mathematical definition of a pure state will be, the following property will
certainly be satisfied: the overlap of a generic (when weighted with the Gibbs measure) configuration in the pure
stateo: with a generic configuration in the pure stateshould be (very close) to a numhbgr, depending only on

a andy. (Precise definitions will be given below.) Consequently, if the ‘valley picture’ is correct, the overlap of
two generic configurations is likely to be (very close to) one of a few possible values (which possibly depend on
the disorder). The purpose of this Note is to prove that thmarkable property is a rigorous consequence of the
extended Ghirlanda—Guerraidentities (EGGI for short).

Theorem 1.1(Heuristic version)If an ensemble of random systems satisfies the EGGI, at given disorder, the law
(under Gibbs’ measujeof the overlap of2 configurations is discrete, and its support is non-random.

More precisely, we prove the following: far> 0, all but a proportion % 5 of this law is carried by about—2
points (depending on the disorder). On the other hand, there are cases where the average over the disorder of tt
law of the overlaps has a continuous part. An example is rigorously constructed in [7], see also [2].

2. Precise statements

We consider a random Hamiltonid#y on Xy = {—1, 1}"V, that depends on a paramefer Averages with
respect to the corresponding Gibbs’ measure (or its productsjphare denoted by-). Given configurations
ol,...,0' ..., € Ty, we define the overlap, o = N"1Y ", .y ofal’. We assume that the paramegbelongs
to a compact space on which exists a probability measfgrerd simplify notation, we denote by a quantity
depending oV andp such that limy_.« / |§| dB = 0. This quantity need not be the same at each occurrence.

Definition 2.1. We say that the EGGI hold if given any integgrany continuous functioff : C,, := [—1, 1]*"=D/2
— R and any continuous functighon[—1, 1] we have, writingg = f ((Rk,¢)1<k<t<n)>

1 1
E(p(Runt1)g) = “E@(RLD)E(R) + ~ 3 | E(@(Ruta.0)g) +9. (1)

l<n

Here and belowE denotes expectation in tmeandomness of the Hamiltonidify .

Itis proved in [6], Lemma 6.4.3, that to any Hamiltonian one can add a small perturbation term, depending on a
parametep such that the perturbed Hamiltonian satisfies the EGGI (see also [1]). The perturbation term is small in
the sense that it does not change the limiting free energy. (Unfortunately, adding this term might change the struc-
ture of the overlaps.) It is not unreasonable to think that a ‘generic Hamiltonian’ satisfies the EGGI without the ad-
dition of a perturbation term (or equivalently, wh@riakes only one value) but often specific Hamiltonians do not.

To express that a probabilityeasure is almost supported by a few pgine introduce the following definition.

Definition 2.2.For a probability measupg on[—1, 1], an integer. ande > 0 we defineA (u, n, €) as the maximum
amount of mass gk that can be carried by the unionmintervals of length at moste2i.e.

A(u,n, ) =sup{u(B); B C[—1,1]is the union of: intervals of length< 2¢}.
We can now give the precise formulation of Theorem 1.1.

Theorem 2.3.1f a random Hamiltonian satisfies the EGGI apddenotes th¢randon) law of R1 2 under Gibbs’
measure, for each integerand eache > 0 we have

E<A(M,n("2_1),e>>>1—ni+5. @)
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Moreover, ifg is a continuous function with < ¢ < 1, for eachn we have

8
</¢d“> )/1 TogmE [pau " )

Of course, we hav¢ ¢ diu = (¢(R1,2)), andE denotes the expectation for the disorder.

In other words, ifN is large, for typical and typical disorden? very small intervals suffice to carry all but
about ¥n of the mass of. If the open interval meets the support of the averageuwobver the disorder, then (if
N is large, for typical@ and typical disorder), we haye(/) > 0.

3. Proofs

Lemma 3.1.1f the EGGI hold, given any continuous functignC,, — R and any continuous functiahon[—1, 1]
we have, using the notatign= f ((R,¢)1<k<e<n)

2 1
E(p(Rys1n42)8) = mE(¢(Rl,z>>E<g> D kﬂ;@gn E(p(Ry0)g) + 8. 4)
Proof. We use (1) wittn + 1 rather tham to get
1 1
E(¢p(Rutr1n12)8) = TlE(d)(Rl 2))E(g) + — ; E(p(Rus1.0)8) +36. (5)

We use (1) again to get that for eatks n we have
1 1
E(¢(Rut1.008) = ~E(¢(RL2)E(g) + ~ > E{p(Riog)+8

ke, k,e<n
and we substitute in (5). O

Let us denote by: the law of Ry in [—1, 1] under Gibbs’ measure and bythe law of (Ri ¢)1<k<e<n in Cy
under Gibbs’ measure. Let us further denotetbgindv the averages g andv respectively with respect to the
disorder. We denote by = (xi ¢)1<k<¢<n the generic point of,,. Then (4) means that

2
E/(i)(X)f(x)dM(x)dV(x)=n—+1/¢(X)f(x)dﬁ(x)dl7(x)
n 1
nn—+1)

/d)(Xk o) f(x) diz(x) + 6. (6)

k£e, k,e<n

Proof of Theorem 2.3. Consider the functiofy on[—1, 1] x C,, given by
1
=min(1, = mi - : 7
¥ ((x, %)) mm( ¢y min_ Lx xk,e|> )

Since this function is continuous it can be approximated arbitrarily well by a finite sum of functions of the type
¢ (x) f(x) whereg and f are continuous, so that by (6) we have

2
E/w(x,xmu(x)dv(x): —/w(x,x)dumda(x)
1

n(n+1) Z /W(xu x)di(x) + 6. -

k<t, k.l<n

Sincey (xx. ¢, x) = 0 we get that [ v (x, x) du(x) dv(x) < 27 + 8, and in particular that
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Einf/w( x)d ()<i+5
n X, /Lx\n+1 .

Since 0< ¥ < 1, for eachry we have

1—p(fx; vix,x) <1})=u({x;1ﬁ(x,x)=1})</w(x,x)du(X),

so that
1 2 < E ; 1
— g S S Esupu(fxi v x) <1}).
Since
rven<tjc |J e—exie+el,

1<k<t<n
for eachx we have

M({va(x,X) < 1}) <A<M7 M,e)

2

and this concludes the proof of (2). To prove (3), we use (4) ter2m, taking f (x) = ngkgm(l— ¢ (x2k—1.2¢)),
to get

(oo fou o)l fou

Sincea Zm>1(1 —a)™ <1, summation fom < p yields

p
(Iogp)E</¢du>E<1—/¢du> <2436,

so that, sincél — 1/p)? > 1/4,
%(log;ﬂE(/qbd,u)P(/gbduS%)<2+8. ]
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