Partial Differential Equations/Ordinary Differential Equations

Asymptotics of instability zones of Hill operators with a two term potential

Plamen Djakov ${ }^{\text {a }}$, Boris Mityagin ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Sofia University, 1164 Sofia, Bulgaria
${ }^{\mathrm{b}}$ Department of Mathematics, The Ohio State University, 231, West 18th Ave, Columbus, OH 43210, USA

Received 30 March 2004; accepted 22 June 2004
Available online 10 August 2004
Presented by Alain Connes

Abstract

We give a sharp asymptotics of the instability zones of the Hill operator $L y=-y^{\prime \prime}+(a \cos 2 x+b \cos 4 x) y$ for arbitrary real $a, b \neq 0$. To cite this article: P. Djakov, B. Mityagin, C. R. Acad. Sci. Paris, Ser. I 339 (2004). © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Estimation asymptotique des intervalles d'instabilité d'opérateurs de Hill avec potentiels à deux termes. Dans cette Note on donne une estimation asymptotique des intervalles d'instabilité d'opérateurs de Hill de la forme $L y=-y^{\prime \prime}+$ $(a \cos 2 x+b \cos 4 x) y$, où a et b sont des réels non nuls arbitraires. Pour citer cet article: P. Djakov, B. Mityagin, C. R. Acad. Sci. Paris, Ser. I 339 (2004).
© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1.

The Schrödinger operator $L y=-y^{\prime \prime}+v(x) y,-\infty<x<\infty$, with real valued periodic $L^{2}([0, \pi])$-potential $v(x), v(x+\pi)=v(x)$, has spectral gaps, or instability zones $\left(\lambda_{n}^{-}, \lambda_{n}^{+}\right), n \geqslant 1$, close to n^{2} if n is large enough. The points $\lambda_{n}^{-}, \lambda_{n}^{+}$could be determined as well as eigenvalues of the Hill equation $L y=-y^{\prime \prime}+v(x) y=\lambda y$, considered on $[0, \pi]$ with boundary conditions $\operatorname{Per}^{+}: y(0)=y(\pi), y^{\prime}(0)=y^{\prime}(\pi)$ for n even, and $\operatorname{Per}^{-}: y(0)=$ $-y(\pi), y^{\prime}(0)=-y^{\prime}(\pi)$ for n odd. See details and basics in [15,17,18,21].

Let $\gamma_{n}=\lambda_{n}^{+}-\lambda_{n}^{-}$be the lengths of the spectral gaps. The decay rates of $\left(\gamma_{n}\right)$ are in a close relation with smoothness of the potential v (see [11,12,22,4-6]). Sometimes the Lyapunov function, or the Hill discriminant (see [17], Sections 2.1-2.2) $\Delta(\lambda)$ can be written explicitly as it happens in the Krönig-Penney model, made of

[^0]a periodic array of δ and δ^{\prime} functions, or onionlike scatterers with several channels (see details in [2] and the bibliography there). Then the asymptotics of the roots of Lyapunov functions (trigonometric polynomials (7), (8) in [2]) and consequently the asymptotics of gaps and bands become a question about roots of elementary trigonometric functions. Without explicit Lyapunov function this task is much more difficult.
2.

In 1980 Harrell [10], and then Avron and Simon [1] gave the asymptotics of spectral gaps of the Mathieu operator $-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+2 a \cos 2 x$. They showed that

$$
\gamma_{n}=\lambda_{n}^{+}-\lambda_{n}^{-}=8\left(\frac{|a|}{4}\right)^{n} \frac{1}{((n-1)!)^{2}}\left(1+\mathrm{O}\left(\frac{1}{n^{2}}\right)\right)
$$

In [1] the question was raised about these asymptotics in the case of two term potential

$$
\begin{equation*}
v(x)=a \cos 2 x+b \cos 4 x \tag{1}
\end{equation*}
$$

Later, Grigis [9] gave generic asymptotics of spectral gaps of the Schrödinger operator $-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+v(x)$ when v is a real-valued trigonometric polynomial. For him, the two term potential

$$
\begin{equation*}
u(x)=c \sin 2 x+d \cos 4 x, \quad d>0 \tag{2}
\end{equation*}
$$

was of special interest as well. (Notice that the shift $x \rightarrow x+\pi / 4$ transforms $u(x) \in(2)$ into $v \in(1)$ with $a=c$, $b=-d$. Their Schrödinger operators are isospectral, so we can consider without loss of generality just potentials (1); however, b could be positive or negative.)
3.

Recently, we found $[7,8]$ the asymptotics of $\left(\gamma_{n}\right)$ for a potential of the form (2) when $c^{2}=8 d>0$. Our proofs were based on the relationship of Dirac operator with potential $\left(\begin{array}{cc}0 & p \\ p & 0\end{array}\right)$ and Hill operators with potential $u= \pm p^{\prime}+$ p^{2}, the Ricatti transform of p. In terms of a, b in (1), if we introduce a parameter t by

$$
\begin{equation*}
a^{2}+8 b t^{2}=0 \tag{3}
\end{equation*}
$$

then $c^{2}=8 d>0$ is a special case of (3) with $t= \pm 1$. Generally, for real $a, b \neq 0$ we set $a^{2}+8 b t^{2}=0, b=$ $-2 \alpha^{2}, a=-4 \alpha t$, where
(i) α and t are real if $b<0$,
(ii) α and t are pure imaginary if $b>0$.

Now, this parametrization plays a special role in asymptotic behavior of gaps $\gamma_{n}(\alpha)$, both for $\alpha \rightarrow 0$ and $n \rightarrow \infty$.
Theorem 3.1. Let $\gamma_{n}, n \in \mathbb{N}$, be the spectral gaps (lengths of instability zones) of the operator

$$
\begin{equation*}
L y=-y^{\prime \prime}-\left[4 \alpha t \cos 2 x+2 \alpha^{2} \cos 4 x\right] y . \tag{4}
\end{equation*}
$$

If t and n are fixed, then for even n

$$
\begin{equation*}
\gamma_{n}=\frac{ \pm 8 \alpha^{n}}{2^{n}[(n-1)!]^{2}} \prod_{k=1}^{n / 2}\left(t^{2}-(2 k-1)^{2}\right)(1+\mathrm{O}(\alpha)), \tag{5}
\end{equation*}
$$

and for odd n

$$
\begin{equation*}
\gamma_{n}=\frac{ \pm 8 \alpha^{n} t}{2^{n}[(n-1)!]^{2}} \prod_{k=1}^{(n-1) / 2}\left(t^{2}-(2 k)^{2}\right)(1+\mathrm{O}(\alpha)) . \tag{6}
\end{equation*}
$$

Remark 1. In the case (ii), if we put $\alpha=\mathrm{i} \beta, t=\mathrm{i} \tau, \beta, \tau$ real, then we can rewrite, say, (6), as

$$
\gamma_{n}=\frac{ \pm 8 \beta^{n} \tau}{2^{n}[(n-1)!]^{2}} \prod_{k=1}^{(n-1) / 2}\left(\tau^{2}+(2 k)^{2}\right)(1+\mathrm{O}(\beta)) .
$$

Of course, (5) could be rewritten in terms of β, τ in the same way.
Proof is based, on the one hand, on our analytic methods [3-6], and on the other hand, on using the approach to coexistence problem of Magnus and Winkler (see [16], [17], Chapter 7, in particular, Theorem 7.9) and sharpening their result about the multiplicities of eigenvalues of the operator (4) in the case where t is an integer.
4.

The essential components of the asymptotics (5) and (6) are polynomials in t of degree n. The combinatorial meaning of their coefficients unearthed in the course of the proof of Theorem 3.1 leads to a series of algebraic identities.

Theorem 4.1. The following formulae hold:

$$
\begin{equation*}
\sum\left(m^{2}-i_{1}^{2}\right) \cdots\left(m^{2}-i_{k}^{2}\right)=\sum_{1 \leqslant j_{1}<\cdots<j_{k} \leqslant m}\left(2 j_{1}-1\right)^{2} \cdots\left(2 j_{k}-1\right)^{2}, \tag{7}
\end{equation*}
$$

where the first sum is over all indicies i_{s} such that

$$
\begin{align*}
& -m<i_{1}<\cdots<i_{k}<m, \quad\left|i_{s}-i_{r}\right| \geqslant 2 ; \\
& \sum\left[(2 m-1)^{2}-\left(2 i_{1}-1\right)^{2}\right] \cdots\left[(2 m-1)^{2}-\left(2 i_{k}-1\right)^{2}\right]=\sum_{1 \leqslant j_{1}<\cdots<j_{k} \leqslant m-1}\left(4 j_{1}\right)^{2} \cdots\left(4 j_{k}\right)^{2}, \tag{8}
\end{align*}
$$

where the first sum is over all indicies i_{s} such that

$$
-m+1<i_{1}<\cdots<i_{k}<m, \quad\left|i_{s}-i_{r}\right| \geqslant 2
$$

The terms in (7) and (8) look to be similar to the terms in the identity conjectured by Kac and Wakimoto [13] and proved by Milne [19], and later by Zagier [23]; see details and further bibliography in [20], in particular, Section 7 and Corollary 7.6, pp. 120-121. Our asymptotic analysis involves eigenvalues of Schrödinger operators. This occurrence of eigenvalues suggests a possible link with advanced determinant calculus developed by Andrews (see Krattenthaler [14] and references there) and Hankel determinants in Milne [20].

5. Asymptotics for $\boldsymbol{n} \rightarrow \infty$

Theorem 5.1. Under the notations of Theorem 3.1, let $\alpha \neq 0$ and $t \neq 0$ be fixed. Then for even n

$$
\begin{equation*}
\gamma_{n}= \pm \frac{8 \alpha^{n}}{2^{n}[(n-2)!!]^{2}} \cos \left(\frac{\pi}{2} t\right)\left[1+\mathrm{O}\left(\frac{\log n}{n}\right)\right] \tag{9}
\end{equation*}
$$

and for odd n

$$
\begin{equation*}
\gamma_{n}= \pm \frac{8 \alpha^{n}}{2^{n}[(n-2)!!]^{2}} \frac{2}{\pi} \sin \left(\frac{\pi}{2} t\right)\left[1+\mathrm{O}\left(\frac{\log n}{n}\right)\right] \tag{10}
\end{equation*}
$$

[Let us recall that $(2 k-1)!!=1 \cdot 3 \cdots(2 k-1),(2 k)!!=2 \cdot 4 \cdots 2 k$.]
Remark 2. As in Remark 1, in the case (ii), $\cos (\pi t / 2)=\cosh (\pi \tau / 2)$ and if n is odd, then the product $\alpha^{n} \sin (\pi t / 2)=i^{n+1} \beta^{n} \sinh (\pi \tau / 2)$ is real.

Acknowledgements

Plamen Djakov acknowledges the hospitality of The Ohio State University at Newark during the academic year 2003/2004.

References

[1] J. Avron, B. Simon, The asymptotics of the gap in the Mathieu equation, Ann. Phys. (NY) 134 (1981) 76-84.
[2] J. Avron, P. Evner, Y. Last, Periodic Schrödinger operators with large gaps and Wannier-Stark ladders, Phys. Rev. Lett. 72 (1994) $896-899$.
[3] P. Djakov, B. Mityagin, Smoothness of solutions of a ODE, Integral Equations Operator Theory 44 (2002) 149-171.
[4] P. Djakov, B. Mityagin, Smoothness of Schrödinger operator potential in the case of Gevrey type asymptotics of the gaps, J. Funct. Anal. 195 (2002) 89-128.
[5] P. Djakov, B. Mityagin, Spectral gaps of the periodic Schrödinger operator when its potential is an entire function, Adv. Appl. Math. 31 (3) (2003) 562-596.
[6] P. Djakov, B. Mityagin, Spectral triangles of Schrödinger operators with complex potentials, Selecta Math. 9 (2003) 495-528.
[7] P. Djakov, B. Mityagin, The asymptotics of spectral gaps of 1D Dirac operator with cosine potential, Lett. Math. Phys. 65 (2003) 95-108.
[8] P. Djakov, B. Mityagin, Multiplicities of the eigenvalues of periodic Dirac operators, Ohio State Mathematical Institute Preprint 04-1 (01/07/04), 32 p.
[9] A. Grigis, Estimations asymptotiques des intervalles d'instabilité pour l'équation de Hill, Ann. Sci. École Norm. Sup. 20 (4) (1987) 641-672.
[10] E. Harrell, On the effect of the boundary conditions on the eigenvalues of ordinary differential equations, Amer. J. Math. (1981), supplement 1981, dedicated to P. Hartman.
[11] H. Hochstadt, Estimates on the stability intervals for the Hill's equation, Proc. Amer. Math. Soc. 14 (1963) 930-932.
[12] H. Hochstadt, On the determination of a Hill's equation from its spectrum, Arch. Rational Mech. Anal. 19 (1965) 353-362.
[13] V.G. Kac, M. Wakimoto, Integrable highest weight modules over affine superalgebras and number theory, in: J.L. Brylinski, R. Brylinski, V. Guillemin, V. Kac (Eds.), Lie Theory and Geometry, in Honor of Bertram Kostant, in: Progr. Math., vol. 123, Birkhäuser, Boston, MA, 1994, pp. 415-456.
[14] C. Krattenthaler, Advanced determinant calculus, Séminaire Lotharingien de Combinatoire 42 (B42q) (1999) 67 p.
[15] B.M. Levitan, I.S. Sargsian, Introduction to Spectral Theory; Selfadjoint Ordinary Differential Operators, Transl. Math. Monographs, vol. 39, American Mathematical Society, Providence, RI, 1975.
[16] W. Magnus, S. Winkler, The coexistence problem for Hill's equation, Research Report No. BR-26, Institute of Mathematical Sciences, New York University, New York, July 1958.
[17] W. Magnus, S. Winkler, Hill's Equation, Wiley, 1969.
[18] V.A. Marchenko, Sturm-Liouville Operators and Applications, Oper. Theory Adv. Appl., vol. 22, Birkhäuser, 1986.
[19] S. Milne, New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan's tau function, Proc. Nat. Acad. Sci. USA 93 (1996) 15004-15008.
[20] S. Milne, Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions, Ramanujan J. 6 (2002) 7-149.
[21] J. Pöschel, E. Trubowitz, Inverse Spectral Theory, Academic Press, 1987.
[22] E. Trubowitz, The inverse problem for periodic potentials, CPAM 30 (1977) 321-342.
[23] D. Zagier, A proof of the Kac-Wakimoto affine denominator formula for the strange series, Math. Res. Lett. 7 (2000) 597-604.

[^0]: E-mail addresses: djakov@fmi.uni-sofia.bg (P. Djakov), mityagin.1@osu.edu (B. Mityagin).
 1631-073X/\$ - see front matter © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
 doi:10.1016/j.crma.2004.06.019

