
rential

es
es

monic
rally, a

t in the

n
in
C. R. Acad. Sci. Paris, Ser. I 339 (2004) 401–404

Partial Differential Equations/Potential Theory

On a Liouville comparison principle for entire weak solutions
of quasilinear elliptic partial differential inequalities

Vasilii V. Kurta

Mathematical Reviews, 416 Fourth Street, P.O. Box 8604, Ann Arbor, Michigan 48107-8604, USA

Received 3 March 2004; accepted after revision 29 June 2004

Available online 21 August 2004

Presented by Pierre-Louis Lions

Abstract

We establish a new Liouville-type comparison principle for entire weak solutions of quasilinear elliptic partial diffe
inequalities of the formA(u) � A(v) on R

n, n � 2. Typical examples of the operatorA(w) are thep-Laplacian and its well-
known modifications for 1< p � 2. To cite this article: V.V. Kurta, C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur un principe de comparaison de type Liouville pour des solutions entières faibles d’inégalités aux dérivées partiell
elliptiques quasi linéaires.On établit un nouveau principe de comparaison de type Liouville pour des solutions entières faibl
d’inégalités aux dérivées partielles elliptiques quasi linéaires de la formeA(u) � A(v) dansR

n, n � 2. Lep-laplacien et ses
modifications bien connues pour 1< p � 2 sont des exemples typiques de l’opérateurA(w). Pour citer cet article : V.V. Kurta,
C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

It is well known that, in order to obtain and even formulate Liouville’s theorem, for example, for superhar
functions onR

2, one needs to compare an arbitrary superharmonic function with a constant which is, natu
trivial subharmonic function. Due to the linearity of the Laplacian one can reformulate this famous resul
form of a Liouville comparison principle:Let (u, v) be an entire solution of the inequality

�u � �v (1)

on R
2 such thatu(x) � v(x). Thenu(x) = v(x), up to a constant, onR2. On the other hand, it is also well know

that for n � 3 there exist non-constant superharmonic functions onR
n bounded below by a constant. In [3],
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particular, we established the ‘sharp distance at infinity’ between the non-constant superharmonic functionR
n,

n � 3, bounded below by a constant and this constant itself in the framework of the Liouville theorem. Again, du
to the linearity of the Laplacian one can reformulate this very special result from [3] in the form of a Liouville
comparison principle:Let (u, v) be an entire solution of inequality(1) on R

n, n � 3, such thatu(x) � v(x). Then
eitheru(x) = v(x) on R

n or the relation

lim inf
r→+∞

[
sup

r�|x|�2r

(
u(x) − v(x)

)]
r(n−2)/(1−ν) = +∞ (2)

holds with any fixedν ∈ (0,1). It is important to note here that forn � 3 the pair(u, v) of functions

u(x) = (
1+ |x|2)(2−n)/2

and v(x) = 0 (3)

is an entire classical solution of inequality (1) such that (2) holds with any fixedν ∈ (0,1) and, at the same time
the relation

lim
r→+∞

[
sup

r�|x|�2r

(
u(x) − v(x)

)]
rn−2 = C, (4)

with C a certain positive constant, also holds.
The main purpose of this Note is to characterize in termsof monotonicity basic properties of quasilinear ellip

partial differential operators which make it possible to obtain a Liouville comparison principle for entire
solutions of quasilinear elliptic partial differential inequalities of the form

A(u) � A(v) (5)

on R
n, n � 2; as a by-product, we also include in our consideration the corresponding case of quasilinear ordin

differential inequalities. Note that such properties are inherent for a wide class of quasilinear differential op
typical examples of which are thep-Laplacian

�p(w) := div
(|∇w|p−2∇w

)
(6)

and its well-known modification, see, e.g., [4], p. 155,

�̃p(w) :=
n∑

i=1

∂

∂xi

(∣∣∣∣ ∂w

∂xi

∣∣∣∣
p−2

∂w

∂xi

)
(7)

for 1 < p � 2 andn � 1.

2. Definitions

Let A(w) be a differential operator given formally by

A(w) =
n∑

i=1

d

dxi

Ai(x,∇w). (8)

Here and in what follows,n � 1. Assume that the functionsAi(x, ξ), i = 1, . . . , n, satisfy the Carathéodor
conditions onRn × R

n; namely, they are continuous inξ at almost allx ∈ R
n and measurable inx at all ξ ∈ R

n.

Definition 2.1. Let α > 1 be a given number. The operatorA(w) given by (8) is said to beα-monotone if
Ai(x,0) = 0, i = 1, . . . , n, at almost allx ∈ R

n, and if for all ξ1, ξ2 ∈ R
n and almost allx ∈ R

n the following
two inequalities hold:

0�
n∑(

ξ1
i − ξ2

i

)(
Ai(x, ξ1) − Ai(x, ξ2)

)
, (9)
i=1
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with equality only ifξ1 = ξ2, and(
n∑

i=1

(
Ai(x, ξ1) − Ai(x, ξ2)

)2

)α/2

�K
(

n∑
i=1

(ξ1
i − ξ2

i )
(
Ai(x, ξ1) − Ai(x, ξ2)

))α−1

(10)

with K a certain positive constant.

Remark 1. It is important to note, as was established in [1], that thep-Laplacian�p(w) and its modification
�̃p(w) areα-monotone forα = p and 1< p � 2. The corresponding algebraic inequalities from which it follo
immediately that the operators�p(w) and�̃p(w) satisfyα-monotonicity condition (10) withα = p and 1< p � 2
can be found e.g. in [1,2].

Remark 2. It is also important to note that there existα-monotone operators with an arbitrary degenerac
ellipticity. So, for example, the differential operator�̄p given formally by

�̄p(w) := div
(
a(x)|∇w|p−2∇w

)
, (11)

with p > 1 and an arbitrary functiona(x) measurable, uniformly bounded and positive onR
n, is α-monotone with

α = p and 1< p � 2.

Definition 2.2. Let α > 1 be a given number, and let the operatorA(w) given by (8) beα-monotone. By an
entire weak solution of inequality (5) onRn we understand a pair(u, v) of functionsu,v :Rn → R

1 such that
u,v ∈ L1

loc(R
n), |∇u|, |∇v| ∈ Lα

loc(R
n) and the integral inequality

∫
Rn

n∑
i=1

ϕxiAi(x,∇u)dx �
∫
Rn

n∑
i=1

ϕxiAi(x,∇v)dx (12)

holds for every nonnegative functionϕ ∈ W1
α (Rn) with compact support.

Analogous definitions of entire weak solutions of the inequalities

A(u) � 0 (13)

and

A(v) � 0, (14)

which are special cases of inequality (5) forv = 0 andu = 0, respectively, can be immediately obtained from
Definition 2.2.

Definition 2.3.Let α > 1 be a given number, and let the operatorA(w) given by (8) beα-monotone. By an entire
weak solution of inequality (13) or (14) onRn we understand a functionw :Rn → R

1 such thatw ∈ L1
loc(R

n),
|∇w| ∈ Lα

loc(R
n) and the integral inequality

∫
Rn

n∑
i=1

ϕxiAi(x,∇w)dx � 0 or
∫
Rn

n∑
i=1

ϕxiAi(x,∇w)dx � 0, (15)

respectively, holds for every nonnegative functionϕ ∈ W1
α(Rn) with compact support.
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3. Results

Theorem 3.1.Let n � 2, 2 � α > 1 andn > α. Let the operatorA(w) given by(8) beα-monotone, and let(u, v)

be an entire weak solution of(5) on R
n such thatu(x) � v(x) andu − v ∈ L∞

loc(R
n). Then eitheru(x) = v(x) on

R
n or the relation

lim inf
r→+∞

[
sup

r�|x|�2r

(
u(x) − v(x)

)]
r(n−α)/(α−1−ν) = +∞ (16)

holds with any fixedν ∈ (0, α − 1).

Theorem 3.2.Let n � 2, 2 � α > 1 andn > α. Let the operatorA(w) given by(8) beα-monotone, and let(u, v)

be an entire weak solution of(5) on R
n such thatu(x) � v(x). Then eitheru(x) = v(x) on R

n or the relation

lim inf
r→+∞ r−α

∫
r�|x|�2r

(
u(x) − v(x)

)α−1−ν dx = +∞ (17)

holds with any fixedν ∈ (0, α − 1).

Remark 3. Let n � 2, 2� α > 1 andn > α. Then the pair(u, v) of functions

u(x) = (
1+ |x|α/(α−1)

)(α−n)/α and v(x) = 0 (18)

defined and locally bounded onRn is an entire weak solution of inequality (5) onRn for A(w) = �p(w) and
A(w) = �̃p(w), with p = α, such that (16) and (17) hold with any fixedν ∈ (0, α − 1) and, at the same time, th
relations

lim
r→+∞

[
sup

r�|x|�2r

(
u(x) − v(x)

)]
r(n−α)/(α−1) = C1 (19)

and

lim
r→+∞ r−α

∫
r�|x|�2r

(
u(x) − v(x)

)α−1 dx = C2, (20)

with C1,C2 certain positive constants, also hold.

Theorem 3.3.Let n = 1 and2 � α > 1 or n = α = 2. Let the operatorA(w) given by(8) beα-monotone, and le
(u, v) be an entire weak solution of(5) onR

n such thatu(x) � v(x). Thenu(x) = v(x), up to a constant, onRn.

Remark 4. To prove these results we further develop an approach that was proposed for solving similar pr
in [1].
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