Logic

Antidirected paths in 5-chromatic digraphs

Amine El Sahili
Section I, Sciences Faculty, Lebanese University, Beyrouth, Lebanon
Received 16 June 2004; accepted 22 June 2004
Available online 14 August 2004
Presented by Jean-Yves Girard

Abstract

Let T_{5} be the regular 5-tournament. B. Grünbaum proved that T_{5} is the only 5 -tournament which contains no copy of the antidirected path P_{4}. In this Note, we prove that, except for T_{5}, any connected 5 -chromatic oriented digraph in which each vertex has out-degree at least two contains a copy of P_{4}. It will be shown, by an example, that the condition that each vertex has out-degree at least two is indispensable. To cite this article: A. El Sahili, C. R. Acad. Sci. Paris, Ser. I 339 (2004). © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Chemins antidirigés dans les graphes 5-chromatiques. Soit T_{5} le tournoi régulier contenant cinq sommets. B. Grünbaum a prouvé que T_{5} est le seul 5 -tournoi qui ne contient pas le chemin antidirigé P_{4}. Nous prouvons dans cette Note que T_{5} est le seul graphe orienté 5 -chromatique dans lequel tout sommet a un degré extérieur au moins deux qui ne contient pas le chemin antidirigé P_{4}. On prouve à l'aide d'un exemple que la condition «tout sommet a un degré exterieur au moins deux» est indispensable. Pour citer cet article : A. El Sahili, C. R. Acad. Sci. Paris, Ser. I 339 (2004). © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

The digraphs considered here have no loops or multiple edges. An oriented graph is a digraph in which, for every two vertices x and y, at most one of $(x, y),(y, x)$ is an edge. The digraphs used in this Note are all oriented graphs. By $G(D)$ we denote the underlying graph of a digraph D. The chromatic number of a digraph is the chromatic number of its underlying graph. A graph G is k-critical if $\chi(G)=k$ and $\chi(G-v)=k-1$ for any vertex v in $V(G)$.

[^0]A block of an oriented path is a maximal directed subpath. We recall that the length of a path is the number of its edges. The antidirected path is an oriented path in which each block is of length 1 . We denote by P_{n} the antidirected path of length n, beginning with a backward edge.

The problem of determining which oriented paths lie in a given n-chromatic digraph D is a well-known problem. When D is an n-tournament, the problem has been completely resolved (Havet and Thomassé [6]). However, the case of an arbitrary n-chromatic digraph is still an open question. We know only that an n-chromatic digraph contains a directed path of length $n-1$ (Roy [7], Gallai [4]), and a path of length $n-1$ formed by two blocks, one of which has length 1 [2]. In this Note, we will be interested in the antidirected paths. In order to generalize the results found on tournaments to arbitrary digraphs, and as a first step in this direction, we generalize to 5-chromatic digraphs a particular result of Grünbaum on 5-tournaments: any 5-tournament, except for the regular tournament T_{5}, contains a copy of P_{4}.

2. The main result

Theorem 2.1. Let D be a 5-chromatic connected digraph, distinct from T_{5}, in which each vertex has out-degree at least two. Then D contains a copy of P_{4}.

To prove this theorem, we need several lemmas.
Lemma 2.2 (Grünbaum [5]). Except for T_{5}, any 5-tournament contains a copy of P_{4}.
Corollary 2.3. Let D be as in the above theorem. If D contains T_{5}, then D contains a copy of P_{4}.
In the sequel, D will denote an oriented digraph as described in Theorem 2.1; by the above corollary we may assume that D contains no 5 -tournament as a subdigraph. Moreover, we suppose to the contrary that D contains no copy of P_{4}. Let D^{\prime} be a 5-critical subdigraph of D and let D° be the subdigraph of D^{\prime} induced by the vertices of out-degree at least three in D^{\prime}.

Let G be a graph which contains no $K_{2 n+1}$, where $n \geqslant 2$. Suppose that we can orient G in such a way that each vertex has in-degree at most n. It is shown in [1] that $\chi(G) \leqslant 2 n$. We have then the following lemma

Lemma 2.4. The set $V\left(D^{\circ}\right)$ is not empty.
Lemma 2.5. Let v be a vertex of D and let x, y be two vertices in $N^{-}(v)$. If $x \in V\left(D^{\circ}\right)$, then $y \notin V\left(D^{\circ}\right)$.
Corollary 2.6. For every vertex v in $D^{\circ}, d_{D^{\circ}}^{-}(v) \leqslant 1$.
Lemma 2.7. Let H be a connected digraph in which each vertex has in-degree at most one. Then H contains at most one cycle.

Lemma 2.8. Let v be a vertex of D such that $d^{+}(v) \geqslant 3$ and let x, y and z be three distinct vertices in $N^{+}(v)$. Suppose that $x \rightarrow y$. Then $N^{-}(y)=N^{-}(z)=\{v, x\}$.

We may easily deduce that $x \rightarrow z$ and $y z \notin E(G(D))$ in this case.
Corollary 2.9. Let x and y be two adjacent vertices of D. Suppose that there exist two vertices v and v^{\prime} of D such that $\{x, y\} \subseteq N^{+}(v) \cap N^{-}\left(v^{\prime}\right)$. Then $N^{+}(v)=\{x, y\}$.

Lemma 2.10. The set $V\left(D^{\circ}\right)$ is independent in D.

Claim 1. Any connected component L of D° contains a vertex v such that $N^{+}(v) \cap\left(V\left(D^{\prime}\right) \backslash V\left(D^{\circ}\right)\right)$ has at least two vertices.

Proof. If L is a cycle, then each vertex of L satisfies the claim; otherwise L contains a vertex v of out-degree zero in D°, and so $N^{+}(v) \subseteq V\left(D^{\prime}\right) \backslash V\left(D^{\circ}\right)$.

Proof of Lemma 2.10. Suppose to the contrary that D° is not an independent set, then there is a connected component L of D° containing at least two vertices. We can choose a vertex v in L satisfying the claim such that $d_{L}^{-}(v)=1$. Let v^{\prime} be a vertex in L such that $v^{\prime} \rightarrow v$ and let v_{1}, v_{2} and v_{3} be three vertices in $N_{D^{\prime}}^{+}(v)$ such that $\left\{v_{1}, v_{2}\right\} \subseteq V\left(D^{\prime}\right) \backslash V\left(D^{\circ}\right)$. The digraph D^{\prime} is 5-critical, so any vertex has degree at least 4 in D^{\prime}. Since for any $i \in\{1,2\}, d_{D^{\prime}}^{+}\left(v_{i}\right) \leqslant 2$, we have $d_{D^{\prime}}^{-}\left(v_{i}\right) \geqslant 2$. Therefore, there is a vertex u of D^{\prime} and $j \in\{1,2\}$ such that $u \notin\left\{v, v_{1}, v_{2}\right\}$ and $u \rightarrow v_{j}$; we have either $u \notin\left\{v, v_{1}, v_{2}, v_{3}\right\}$ or $u=v_{3}$. In the latter case $v_{3} \notin V\left(D^{\circ}\right)$ by Lemma 2.5. We have $d_{D^{\prime}}^{-}\left(v_{3}\right) \geqslant 2$, so there is a vertex w of D^{\prime} such that $w \notin\left\{v, v_{1}, v_{2}, v_{3}\right\}$ and $w \rightarrow v_{3}$, thus we may assert that there exists a vertex u of D^{\prime} and $j \in\{1,2,3\}$ such that $u \notin\left\{v, v_{1}, v_{2}, v_{3}\right\}, v_{j} \notin D^{\circ}$ and $u \rightarrow v_{j}$. Let u^{\prime} be a vertex of D distinct from v_{j} such that $u \rightarrow u^{\prime}$. If $u^{\prime} \neq v$, the path $u^{\prime} u v_{j} v v_{h}$ is a copy of P_{4}, where $h \in\{1,2,3\} \backslash\{j\}$ is chosen such that $u^{\prime} \neq v_{h}$, a contradiction. Otherwise, let w be a vertex in $N^{+}\left(v^{\prime}\right) \backslash\left\{v, v_{j}, u\right\}$. Such a vertex exists since $d^{+}\left(v^{\prime}\right) \geqslant 3$ and $v_{j} \notin N^{+}\left(v^{\prime}\right)$ by Lemma 2.5. The path $v_{j} u v v^{\prime} w$ is a copy of P_{4}, a contradiction.

In the sequel, we will need the following theorem proved by Gallai [3].
Theorem 2.11. Let G be a k-critical graph, where k is a positive integer. Let G_{m} be the subgraph of G induced by the vertices of degree $k-1$. Then each block of G_{m} is either complete or a chordless odd cycle.
D_{4} will denote the subdigraph of D^{\prime} induced by the vertices of degree 4 .

Lemma 2.12. Any vertex of D^{\prime} has in-degree (in D^{\prime}) at least 2.
We now associate to each vertex v in D° the set

$$
S(v)=\left\{t(v), t^{\prime}(v), v_{0}, \ldots, v_{g(v)}, v_{g(v)+1}\right\}, \quad 0 \leqslant g(v) \leqslant 5
$$

defined as follows (see Fig. 1): $\left\{v_{0}, t(v), t^{\prime}(v)\right\}=N_{D^{\prime}}^{+}(v)$ where $v_{0} \rightarrow t(v)$ and $v_{0} \rightarrow t^{\prime}(v), v_{1}=v$. Set $T(v)=$ $\left\{t(v), t^{\prime}(v)\right\}$. If $d_{D^{\prime}}^{-}\left(v_{0}\right) \geqslant 3$, put $g(v)=0$; if not, let v_{2} be the unique vertex of D^{\prime} distinct from v_{1} such that $v_{2} \rightarrow v_{0}$. We have $v_{2} \rightarrow v_{1}$. Again, if $d_{D^{\prime}}^{-}\left(v_{1}\right) \geqslant 3$, put $g(v)=1$; otherwise, let v_{3} be the unique vertex of D^{\prime} distinct from v_{2} such that $v_{3} \rightarrow v_{1}$; such a vertex exists by Lemma 2.12. We have $v_{3} \rightarrow v_{2}$, since otherwise we have either a path P_{4} in D or $d_{D^{\prime}}^{-}\left(v_{0}\right) \geqslant 3$. We may continue this process until meeting the first vertex of in-degree at least three in D^{\prime}; call this vertex $v_{g(v)}$, where $g(v)$ is the number of iterations required. Such a vertex exists and $g(v) \leqslant 5$. In fact, suppose that v_{1}, \ldots, v_{5} are defined as above and $d_{D^{\prime}}^{+}\left(v_{i}\right)=2, i=1, \ldots, 4$. By Corollary 2.9,

Fig. 1. The case $g(v)=5$.
we have $d_{D^{\prime}}^{+}\left(v_{i}\right)=2, i=2, \ldots, 5$. If $d_{D^{\prime}}^{-}\left(v_{5}\right)=2$ the vertices v_{2}, \ldots, v_{5} will be in the same block of D_{4}. By Theorem 2.11, $D^{\prime}\left[v_{2}, \ldots, v_{5}\right]$ is complete, which is a contradiction since $v_{2} v_{5} \notin E(G(D))$.

Set $O(v)=t\left\{z \in D^{\prime}: z \neq v_{g(v)+1}\right.$ and $\left.z \rightarrow v_{g(v)}\right\}$; we have $z \rightarrow v_{g(v)+1}$ for every z in $O(v)$.
Lemma 2.13. Let u and v be two distinct vertices of D°. We have:

$$
S(u) \cap S(v)=\phi
$$

Lemma 2.14. Set $L=\left\{v_{g(v)}: v \in D^{\circ}\right\}$. We have:
(i) $d_{D^{\prime}}^{-}(x)=3$ for any x in L.
(ii) $d_{D^{\prime}}^{-}(x)=2$ otherwise.

Corollary 2.15. For any vertex v in $D^{\circ}, O(v)$ contains exactly two vertices.
Proof of Theorem 2.1. Define the sets:

$$
S=\bigcup_{v \in V\left(D^{\circ}\right)} S(v), \quad O=\bigcup_{v \in V\left(D^{\circ}\right)} O(v), \quad T=\bigcup_{v \in V\left(D^{\circ}\right)} T(v)
$$

We have $|O| \leqslant|T|$. If $O=T$, then $N_{D^{\prime}}(v) \subseteq S$ for every v in S. Since D^{\prime} is critical, it must be connected and so $D^{\prime}=D^{\prime}[S]$. We define a colouring c of D^{\prime} as follows: Let v be a vertex in D°. Put $c(t(v))=c\left(t^{\prime}(v)\right)=1$, $c\left(v_{0}\right)=2, c\left(v_{1}\right)=3$. If $g(v)=1$, put $c\left(v_{2}\right)=4$. If $g(v)>1$, the colours 1,2 and 3 suffice to colour $S(v) \backslash\left\{v_{g(v)}, v_{g(v)+1}\right\}$. Put $c\left(v_{g(v)}\right)=4$ and $c\left(v_{g(v)+1}\right)=i$ where $i \in\{2,3\}$ is chosen such that $i \neq c\left(v_{g(v)-1}\right)$. It is clear that c is a proper 4-colouring of the 5 -chromatic digraph D^{\prime}, a contradiction.

If $O \neq T$ then, since $|O| \leqslant|T|$, there is a vertex v in D° such that either $t(v) \notin O$ or $t^{\prime}(v) \notin O$. Suppose, without loss of generality, that $t(v) \notin O$. Then $N_{D^{\prime}}^{+}(t(v)) \cap S=\phi$. Let $N_{D^{\prime}}^{+}(t(v))=\left\{u, u^{\prime}\right\}$. We have $\left\{u, u^{\prime}\right\} \cap$ $\left(D^{\circ} \cup L\right)=\phi$, so $d_{D^{\prime}}^{-}(u)=d_{D^{\prime}}^{+}(u)=d_{D^{\prime}}^{-}\left(u^{\prime}\right)=d_{D^{\prime}}^{+}\left(u^{\prime}\right)=2$ and $d_{D^{\prime}}(u)=d_{D^{\prime}}\left(u^{\prime}\right)=4$. On the other hand, there exists a vertex w in D^{\prime} such that $w \notin\left\{u, u^{\prime}\right\}$ and $N_{D^{\prime}}^{+}(w) \cap\left\{u, u^{\prime}\right\} \neq \phi$. We have $N_{D^{\prime}}^{+}(w)=\left\{u, u^{\prime}\right\}$ since D^{\prime} contains no path P_{4} and $w t(v)$ cannot be an edge of $G\left(D^{\prime}\right)$; thus $d_{D^{\prime}}(w)=4$.

Since $d_{D^{\prime}}(t(v))=4$, the vertices $t(v), u, u^{\prime}$ and w are in a block of D_{4} which is neither complete nor a chordless odd cycle, which contradicts Theorem 2.11. This completes the proof of Theorem 2.1.

An example which shows that the condition that each vertex has out-degree at least two in Theorem 2.1 is indispensable can be constructed from the 5-tournament T_{5} with an edge (x, y) such that $x \notin V\left(T_{5}\right)$ and $y \in V\left(T_{5}\right)$.

If H contains a path P_{4}, x cannot be an interior vertex of P_{4} since $d(x)=1$; furthermore it cannot be an end of P_{4} since $d^{-}(x)=0$. Thus $P_{4} \subseteq T_{5}$ which contradicts Lemma 2.2.

We conclude this paper by asking the following question: Does there exist a 5 -chromatic oriented graph which contains neither a 5-tournament nor P_{4} ?

References

[1] A. El Sahili, Functions and line digraphs, J. Graph Theory 4 (2003) 296-303.
[2] A. El Sahili, Paths with two blocks in k-chromatic digraphs, J. Discrete Math., in press.
[3] T. Gallai, Kritische Graphen, I, Publ. Math. Inst. Hangar. Acad. Sci. 8 (1963) 165-192.
[4] T. Gallai, On directed paths and circuits, in: P. Erdös, G. Katona (Eds.), Theory of Graphs, Academic Press, 1968, pp. 115-118.
[5] B. Grünbaum, Antidirected Hamiltonian paths in tournaments, J. Comb. Theory B 11 (1971) 469-474.
[6] F. Havet, S. Thomassé, Oriented Hamiltonian paths in tournaments: a proof of Rosenfeld's conjecture, J. Comb. Theory B 78 (2) (2000) 243-273.
[7] B. Roy, Nombre chromatique et plus longs chemins d'un graphe, Rev. Française Automat. Informat. Recherche Opérationelle Sér. Rouge 1 (1967) 127-132.

[^0]: E-mail address: aminsahi@inco.com.lb (A. El Sahili).
 1631-073X/\$ - see front matter © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
 doi:10.1016/j.crma.2004.06.028

