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Abstract

We consider unimodal polynomials with igenbaum topologicatype and critical poits whose orders tend to infinity. It
is shown that the hyperbolic dimensions of their Julia set go to 2; furthermore, that the Hausdorff dimensions of the basins
of attraction of their Feigenbaum attractors also tend.tdh2 proof is based on constructing a limiting dynamics with a flat
critical point.To cite this article: G. Levin, GSwiqtek, C. R. Acad. Sci. Paris, Ser. | 339 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

L’ épaisseur desensemblesde Juliade polynémesde Feigenbaum ayant despointscritiquesd’ ordreélevé. On considére
des polynémes unimodaux tige topologijue de Feigenbaum et les points critiqdest I'ordre tend ves I'infini. On montre
que la dimension hyperbolique des ensembles de Julia ten@vBes plus, la dimension de Hausdorff du bassin d’attraction
des attracteurs tend aussi vers 2. La peesiappuie sur une construction de la dyrigue limite avec un pait critique plat.

Pour citer cet article : G. Levin, Géwiqtek, C. R. Acad. Sci. Paris, Ser. | 339 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Mainresults

A significant problem in holomorphic dynamics concerns the sizes of Julia set of rational maps. Not much is
known about this problem in general except for the hippéc case. A principle whic has recently emerged is
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that a certain amount of expansion on the post-criticalasairs a thin Julia set, while the lack of such expansion

will make the Julia set thick. In the former direction, one can mention results obtained under Collet-Eckmann type

of conditions, see [3] and [6]. In the other direction, one has the results of [7] which has found many Julia set of

Hausdorff dimension 2 for quadratic polynomials and [1ieh is not directly related to holomorphic dynamics,

but appears indicative of what one might expect to find. The lack of expansion in these cases may be due to
parabolic phenomena or to a highly degenerate form of the critical point itself.

Based on this principle, for infinitely renormalizable polynomials one might expect to find thick Julia sets,
particularly when the critical point is very degenerate. We provide some evidence of that by showing that the
Hausdorff dimension of Julia sets of unimodal polynomtatsds to 2 as the degree of degeneracy of their critical
points grows, see Theorem 1.1. Our method is based on constructing a limiting map for which the critical point is
infinitely degenerate (flat) and obtaining estimates by viewing the high degree polynomials as perturbations of the
limit map.

Notations and basic facts

We will write unimodal mappings of an intervat]: [0, 1] — [0, 1] in the following non-standard form (x) =
|E(x)|¢, wheret > 1 is a real number and is a analytic mapping with strictly negative derivative[@1] which
maps 0 to 1 and 1 to a point insige 1, 0). ThenH is unimodal with the minimum at some = E~1(0) € (0, 1)
andxg is the critical point of ordet.

For every? > 1 even integer there exists a unique fixed pdifatx) = |E¢(x)|® of the Feigenbaum functional
equation

TH?(x) = H(tx) @)

for x € [0, 7 Y with t := 7, > 1.

MappingsHy, ¢ even, belong to thEpstein classi.e. wheneveH,(z) = z1 ¢ R, then there is an inverse branch
of H, defined on the upper or lower half plane, depending on the positien @fhich maps; to z.

The main results of this paper are contained in the following theorem:

Theorem 1.1. For everye > O there is¢. such that whenevet is a real unimodal polynomial-like mapping which
is conjugated to the Feigenbaum map and all derivatives of order less thar, vanish at its critical point, then

o the filled-in Julia set 06 contains a hyperbolic invariant subset with Hausdorff dimension greater2haa,
o the set of points of the filled-in Julia set Gfwhosew-limit set is equal to thev-limit set of the critical point
has Hausdorff dimension greater th@n- ¢.

For Theorem 1.1 our non-standard normalizatiorunfimodal map does not make a difference, although it
makes an important difference in the proof.

2. Limitsas{ — o

The proof of Theorem 1.1 is based on an understanding of the metric dynamics of a limit hapnas to
oo and in particular on the construction of scaling-invariant Markov partition. Then the claims of the theorem are
derived by perturbing that Markov partition.

As ¢ goes tooco, mappingsH, converge to a non-trivial analytic limit. This is true owing to the normalization
we use. Details were studied in [2,4]. Let us list the facts relevant for our problem:

— On the interval0, 1], H, converge uniformly to a unimodal map with a critical point atxg which satisfies
the Feigenbaum fixed point equation (1).
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— H has an analytic continuation to the union of two topological di€ks> 0 and£2,., both symmetric with
respect to the real axis with closures intersecting exactlygaf he boundaries of2,. and $2_ are Jordan
curves with Hausdorff dimension 1.

— Onany compact subset &f, U §2_, H, are defined and analytic for @lllarge enough and converge uniformly
to H.

Let us denoteHy (z) = " H (zt¥) for any integerk. Because of the fixed point equatiai? = Hi_1. Also,
we introduce an annuluB := $2_ \ t~12_. Let B’ denote the image & under the principal branch of the log.
Hence,B’ by definition is contained in the strig: |3z| < 7}.

The key construction is described by the following theorem:

Theorem 2.1. For a fixed open neighborhoad’ of B’ and for every choice af > 0 and integerx, there are an
integer N, constantC1 > 0 and a maply , which is induced byHy on the union of finitely many topological
disksV;, all contained with their closures inside. These dynamical properties hold

— Ty = HZ{, maps eactV; ontot*(B) \ (—oo, 0]. Furthermore, the entire trajectory;, Hy (V;), . ..H]{',"(Vi)
is contained inc¥ (B) and avoidst —V-1(B).
— for everyi, if Fifa’K :B’ — B’ + rklogt denotes the mappinigg(/ . (€Xp(z))) restricted tolog(V;), then

Fi/,a,/( continues analytically to a univalent palefined on a set compactly containediihonto C’.

To state additionametric properties denoté/, , := maxdiamV;}, m, , = min{diamV;} and ., the joint
measure of setg;. Then

logu,t <alogM;t,  logm; < cCilogm,t.

Observe that the extension condition in Theorem 2.1 means that all iterates of the fifgp. have uniformly
bounded distortion, which only depends on the geometry of th€ setd is therefore independent framandx.
The proof of Theorem 2.1 is based first on constructing a dynamid@s on

Lemma 2.2. For every Ng there is a mappind~y, induced byHy, which is defined on the union of topological
disks W; each of which is mapped ontd B \ (—oo, 0] for somek = No + 1, No, ...,0,—1,.... The map/ 'y,
satisfies the extension and dynamical properties as in TheBrém

The metric properties are

— the measure oB \ | W; tends td0 as Ny increases tax,
— there exist positive constanfs;, K2 such that for everyk < Ng, the joint measure of thos#; which are
mapped onta* B \ (—oo, 0] is at leastK |k|~X2, in other words polynomial in terms &f

The last statement is crucial and it follows from the form of the flat critical poirf of

To continue the construction usirdgy,, one further eliminates some of the digks which may be too small in
diameter or are mapped ontéB \ (—oo, 0] for k too large. The remainin®/; are only finitely many, and each
of them maps onte* B \ (—oo, 0] with k between— Ny and No. The smaller ther requested in Theorem 2.1, the
less measure can be eliminated which means that I&fgemd smaller diameters need to be allowed. The map
I'y, can be iterated in the sense thaWf is mapped onta*B \ (—o0, 0], thenFNo(t—"FNo) makes sense on all
W;, etc. This iteration goes on fép steps, leading to an exponential shrimiiof the diameters of the pieces and
an exponential loss of the measure of points which areistlay, but the ratio of that loss can be made arbitrarily
close to 1. The images of those piecesv inhabit various scales betweentoNo and koMo,
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At that point a ‘forcing step’ which useg,n, is employed in which all pieces vi¢h fail to map to the desired
scalet” B \ (—o0, Q] are eliminated. This of course leads to a vegngficant loss of measure to discarded pieces.
However, in view of the last claim of Lemma 2.2, then portion which remains is sub-exponentially small in terms
of ko. Thus, ifkg is chosen sufficiently large depending 8p, the average exponential rate of decay of the measure
per one step is essentially unaffected by the forcing step and can remain very close to 1.

In this way the metric estimates of Theorem 2.1 are satisfied, while the dynamical properties follow directly
from the features of the limit map.

Estimates of Hausdorff dimension
These estimates can be obtained using Frostman’s Lemma and the result is:

Lemma 2.3. If a mapping [l satisfies the claim of Theorekl, regardless of whether it is induced by any
ambient dynamics and for an arbitrary annulBssurrounding0, then the Hausdorff dimension of the set of points
which remain in the domain df forever under the iteration by—* I, , has Hausdorff dimension as le&st 2.

Whenk = 0, then points which can be forever iteratedly, are in fact forever in the domain &fy and avoid
t~N=kB for all k > 0. It follows thatHy is uniformly expanding on the union of images of this set. Thus, in the
light of Lemma 2.3, the hyperbolic Hausdorff dimension of the Julia séfpfand hence of{, is at least 2- 2«.

Whenk = —1 points which can forever be iterated by, , are also in the filled-in Julia set éfy. Moreover,

Iy, —1 maps such points into the filled-in Julia setif;_1. SinceH has the Epstein property, this implies that the
w-limit set of such points is the Feigenbaum attractor.

In this way, we conclude that for the limiting map the Hausdorff dimension of the set of points wHos# set
coincides with the Feigenbaum attractor as well as the hyperbolic dimension of Julia set are equal to 2. By slightly
different considerations also based on the induced dynamics and with improved control of the distortion, the area
of the Julia set is zero.

3. Derivation of main results

A proof of Theorem 1.1 is obtained by perturbing the construction of the Fpap Recall thatH, is the fixed
point of Feigenbaum’s equation (1) withe critical point degenerate of ordeand denotéd, (x) := té‘ Hg(‘[[kx).
Using the convergence, we easily observe that for each choicecofy o  with the properties listed in the claim
of Theorem 2.1 can still be induced ), y instead ofHy provided that order of degeneraéye large enough
depending omx andk.

Oncely o has been obtained, Lemma 2.3 can be used again. This yields the proof of Theorem 1.1 for maps
H,. Finally, the results generalize to all polynomiikle maps by convergence of renormalization, [5].
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