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Abstract

We consider unimodal polynomials with Feigenbaum topologicaltype and critical points whose orders tend to infinity.
is shown that the hyperbolic dimensions of their Julia set go to 2; furthermore, that the Hausdorff dimensions of th
of attraction of their Feigenbaum attractors also tend to 2. The proof is based on constructing a limiting dynamics with a
critical point.To cite this article: G. Levin, G.́Swiątek, C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

L’épaisseur des ensembles de Julia de polynômes de Feigenbaum ayant des points critiques d’ordre élevé. On considère
des polynômes unimodaux detype topologique de Feigenbaum et les points critiquesdont l’ordre tend vers l’infini. On montre
que la dimension hyperbolique des ensembles de Julia tend vers2. De plus, la dimension de Hausdorff du bassin d’attrac
des attracteurs tend aussi vers 2. La preuve s’appuie sur une construction de la dynamique limite avec un point critique plat.
Pour citer cet article : G. Levin, G.́Swiątek, C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Main results

A significant problem in holomorphic dynamics concerns the sizes of Julia set of rational maps. Not m
known about this problem in general except for the hyperbolic case. A principle which has recently emerged
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that a certain amount of expansion on the post-critical set favors a thin Julia set, while the lack of such expans
will make the Julia set thick. In the former direction, one can mention results obtained under Collet–Eckma
of conditions, see [3] and [6]. In the other direction, one has the results of [7] which has found many Juli
Hausdorff dimension 2 for quadratic polynomials and [1], which is not directly related to holomorphic dynamic
but appears indicative of what one might expect to find. The lack of expansion in these cases may b
parabolic phenomena or to a highly degenerate form of the critical point itself.

Based on this principle, for infinitely renormalizable polynomials one might expect to find thick Julia
particularly when the critical point is very degenerate. We provide some evidence of that by showing t
Hausdorff dimension of Julia sets of unimodal polynomialstends to 2 as the degree of degeneracy of their cri
points grows, see Theorem 1.1. Our method is based on constructing a limiting map for which the critical
infinitely degenerate (flat) and obtaining estimates by viewing the high degree polynomials as perturbation
limit map.

Notations and basic facts

We will write unimodal mappings of an interval,H : [0,1] → [0,1] in the following non-standard formH(x) =
|E(x)|�, where� > 1 is a real number andE is a analytic mapping with strictly negative derivative on[0,1] which
maps 0 to 1 and 1 to a point inside(−1,0). ThenH is unimodal with the minimum at somex0 = E−1(0) ∈ (0,1)

andx0 is the critical point of order�.
For every� > 1 even integer there exists a unique fixed pointH�(x) = |E�(x)|� of theFeigenbaum functiona

equation

τH 2(x) = H(τx) (1)

for x ∈ [0, τ−1] with τ := τ� > 1.
MappingsH�, � even, belong to theEpstein class, i.e. wheneverH�(z) = z1 /∈ R, then there is an inverse bran

of H� defined on the upper or lower half plane, depending on the position ofz1, which mapsz1 to z.
The main results of this paper are contained in the following theorem:

Theorem 1.1. For everyε > 0 there is�ε such that wheneverG is a real unimodal polynomial-like mapping whic
is conjugated to the Feigenbaum map and all derivatives ofG of order less than�ε vanish at its critical point, then:

• the filled-in Julia set ofG contains a hyperbolic invariant subset with Hausdorff dimension greater than2− ε,
• the set of points of the filled-in Julia set ofG whoseω-limit set is equal to theω-limit set of the critical point

has Hausdorff dimension greater than2− ε.

For Theorem 1.1 our non-standard normalization ofunimodal map does not make a difference, althoug
makes an important difference in the proof.

2. Limits as � → ∞
The proof of Theorem 1.1 is based on an understanding of the metric dynamics of a limit map as� tends to

∞ and in particular on the construction of scaling-invariant Markov partition. Then the claims of the theor
derived by perturbing that Markov partition.

As � goes to∞, mappingsH� converge to a non-trivial analytic limit. This is true owing to the normaliza
we use. Details were studied in [2,4]. Let us list the facts relevant for our problem:

– On the interval[0,1], H� converge uniformly to a unimodal mapH with a critical point atx0 which satisfies
the Feigenbaum fixed point equation (1).
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– H has an analytic continuation to the union of two topological disksΩ− � 0 andΩ+, both symmetric with
respect to the real axis with closures intersecting exactly atx0. The boundaries ofΩ+ andΩ− are Jordan
curves with Hausdorff dimension 1.

– On any compact subset ofΩ+ ∪Ω−, H� are defined and analytic for all� large enough and converge uniform
to H .

Let us denoteHk(z) = τ kH(zτ−k) for any integerk. Because of the fixed point equation,H 2
k = Hk−1. Also,

we introduce an annulusB := Ω− \ τ−1Ω−. Let B ′ denote the image ofB under the principal branch of the lo
Hence,B ′ by definition is contained in the strip{z: |�z| < π}.

The key construction is described by the following theorem:

Theorem 2.1. For a fixed open neighborhoodC′ of B ′ and for every choice ofα > 0 and integerκ , there are an
integerN , constantC1 > 0 and a mapΓα,κ which is induced byHN on the union of finitely many topologic
disksVi , all contained with their closures insideB. These dynamical properties hold:

– Γα,κ = H
ji

N maps eachVi ontoτ κ (B) \ (−∞,0]. Furthermore, the entire trajectoryVi,HN(Vi), . . .H
ji

N (Vi)

is contained inτN(B) and avoidsτ−N−1(B).
– for everyi, if Γ ′

i,α,κ :B ′ → B ′ + κ logτ denotes the mappinglog(Γα,κ(exp(z))) restricted tolog(Vi), then
Γ ′

i,α,κ continues analytically to a univalent map defined on a set compactly contained inC′ ontoC′.

To state additionalmetric properties denoteMα,κ := max{diamVi}, mα,κ = min{diamVi} and µα,κ the joint
measure of setsVi . Then

logµ−1
α,κ < α logM−1

α,κ , logm−1
α,κ < C1 logM−1

α,κ .

Observe that the extension condition in Theorem 2.1 means that all iterates of the mapτ−κΓα,κ have uniformly
bounded distortion, which only depends on the geometry of the setC and is therefore independent fromα andκ .

The proof of Theorem 2.1 is based first on constructing a dynamics onB:

Lemma 2.2. For everyN0 there is a mappingΓN0 induced byHN0 which is defined on the union of topologic
disksWi each of which is mapped ontoτ kB \ (−∞,0] for somek = N0 + 1,N0, . . . ,0,−1, . . . . The mapΓN0

satisfies the extension and dynamical properties as in Theorem2.1.
The metric properties are:

– the measure ofB \ ⋃
Wi tends to0 asN0 increases to∞,

– there exist positive constantsK1,K2 such that for everyk � N0, the joint measure of thoseWi which are
mapped ontoτ kB \ (−∞,0] is at leastK1|k|−K2, in other words polynomial in terms ofk.

The last statement is crucial and it follows from the form of the flat critical point ofH .
To continue the construction usingΓN0, one further eliminates some of the disksWi which may be too small in

diameter or are mapped ontoτ kB \ (−∞,0] for k too large. The remainingWi are only finitely many, and eac
of them maps ontoτ kB \ (−∞,0] with k between−N0 andN0. The smaller theα requested in Theorem 2.1, th
less measure can be eliminated which means that largerN0 and smaller diameters need to be allowed. The m
ΓN0 can be iterated in the sense that ifWi is mapped ontoτ kB \ (−∞,0], thenΓN0(τ

−kΓN0) makes sense on a
Wj , etc. This iteration goes on fork0 steps, leading to an exponential shrinking of the diameters of the pieces a
an exponential loss of the measure of points which are stillin play, but the ratio of that loss can be made arbitra
close to 1. The images of those piecesnow inhabit various scales betweenτ−k0N0 andτ k0N0.
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At that point a ‘forcing step’ which usesΓk0N0 is employed in which all pieces which fail to map to the desire
scaleτκB \ (−∞,0] are eliminated. This of course leads to a very significant loss of measure to discarded piec
However, in view of the last claim of Lemma 2.2, then portion which remains is sub-exponentially small in
of k0. Thus, ifk0 is chosen sufficiently large depending onN0, the average exponential rate of decay of the mea
per one step is essentially unaffected by the forcing step and can remain very close to 1.

In this way the metric estimates of Theorem 2.1 are satisfied, while the dynamical properties follow d
from the features of the limit map.

Estimates of Hausdorff dimension

These estimates can be obtained using Frostman’s Lemma and the result is:

Lemma 2.3. If a mappingΓα,κ satisfies the claim of Theorem2.1, regardless of whether it is induced by a
ambient dynamics and for an arbitrary annulusB surrounding0, then the Hausdorff dimension of the set of po
which remain in the domain ofΓ forever under the iteration byτ−κΓα,κ has Hausdorff dimension as least2− 2α.

Whenκ = 0, then points which can be forever iterated byΓα,κ are in fact forever in the domain ofHN and avoid
τ−N−kB for all k > 0. It follows thatHN is uniformly expanding on the union of images of this set. Thus, in
light of Lemma 2.3, the hyperbolic Hausdorff dimension of the Julia set ofHN , and hence ofH , is at least 2− 2α.

Whenκ = −1 points which can forever be iterated byτΓα,κ are also in the filled-in Julia set ofHN . Moreover,
Γα,−1 maps such points into the filled-in Julia set ofHN−1. SinceH has the Epstein property, this implies that t
ω-limit set of such points is the Feigenbaum attractor.

In this way, we conclude that for the limiting map the Hausdorff dimension of the set of points whoseω-limit set
coincides with the Feigenbaum attractor as well as the hyperbolic dimension of Julia set are equal to 2. By
different considerations also based on the induced dynamics and with improved control of the distortion,
of the Julia set is zero.

3. Derivation of main results

A proof of Theorem 1.1 is obtained by perturbing the construction of the mapΓα,κ . Recall thatH� is the fixed
point of Feigenbaum’s equation (1) withthe critical point degenerate of order� and denoteH�,k(x) := τ k

� H�(τ
−k
� x).

Using the convergence, we easily observe that for each choice ofα,κ , Γ�,α,κ with the properties listed in the claim
of Theorem 2.1 can still be induced byH�,N instead ofHN provided that order of degeneracy� be large enough
depending onα andκ .

OnceΓ�,α,κ has been obtained, Lemma 2.3 can be used again. This yields the proof of Theorem 1.1 fo
H�. Finally, the results generalize to all polynomial-like maps by convergence of renormalization, [5].
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