Differential Topology

Isotropic nonarchimedean S-arithmetic groups are not left orderable

Lucy Lifschitz ${ }^{\text {a }}$, Dave Witte Morris ${ }^{\text {b,c,* }}$
${ }^{\text {a }}$ Department of Mathematics, University of Oklahoma, Norman, OK 73019, USA
${ }^{\text {b }}$ Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
${ }^{\text {c }}$ Department of Mathematics, Oklahoma State University, Stillwater, OK 74078, USA

Received 30 May 2004; accepted after revision 6 July 2004

Presented by Étienne Ghys

Abstract

If \mathcal{O}_{S} is the ring of S-integers of an algebraic number field F, and \mathcal{O}_{S} has infinitely many units, we show that no finiteindex subgroup of $\mathrm{SL}\left(2, \mathcal{O}_{S}\right)$ is left orderable. (Equivalently, these subgroups have no nontrivial orientation-preserving actions on the real line.) This implies that if G is an isotropic F-simple algebraic group over an algebraic number field F, then no nonarchimedean S-arithmetic subgroup of G is left orderable. Our proofs are based on the fact, proved by D. Carter, G. Keller, and E. Paige, that every element of $\operatorname{SL}\left(2, \mathcal{O}_{S}\right)$ is a product of a bounded number of elementary matrices. To cite this article: L. Lifschitz, D.W. Morris, C. R. Acad. Sci. Paris, Ser. I 339 (2004). © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Les groupes S-arithmétiques non-archimédiens isotropes ne sont pas ordonnables à gauche. Si \mathcal{O}_{S} est l'anneau des S-entiers d'un corps de nombres F, et \mathcal{O}_{S} a une infinité d'unités, nous prouvons qu'aucun sous-groupe d'indice fini de $\mathrm{SL}\left(2, \mathcal{O}_{S}\right)$ n'est ordonnable à gauche. (En d'autres termes, les sous-groupes d'indice fini de $\mathrm{SL}\left(2, \mathcal{O}_{S}\right)$ ne possèdent pas d'action non triviale sur la droite réelle respectant l'orientation.) Cela implique que si G est un groupe algébrique F-simple isotrope, défini sur un corps de nombres F, alors aucun sous-groupe S-arithmétique non-archimédien de G n'est ordonnable à gauche. La démonstration est fondée sur le fait, dû à D. Carter, G. Keller, et E. Paige, que chaque élément de $\operatorname{SL}\left(2, \mathcal{O}_{S}\right)$ est le produit d'un nombre borné de matrices élémentaires. Pour citer cet article : L. Lifschitz, D.W. Morris, C. R. Acad. Sci. Paris, Ser. I 339 (2004).
© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

[^0]
1. Introduction

It is known [9] that finite-index subgroups of $\operatorname{SL}(3, \mathbb{Z})$ or $\operatorname{Sp}(4, \mathbb{Z})$ are not left orderable. (That is, there does not exist a total order \prec on any finite-index subgroup, such that $a b \prec a c$ whenever $b \prec c$.) More generally, if G is a \mathbb{Q}-simple algebraic \mathbb{Q}-group, with \mathbb{Q}-rank $G \geqslant 2$, then no finite-index subgroup of $G_{\mathbb{Z}}$ is left orderable. It has been conjectured that the restriction on \mathbb{Q}-rank can be replaced with the same restriction on \mathbb{R}-rank, which is a much weaker hypothesis:

Conjecture 1. If G is a \mathbb{Q}-simple algebraic \mathbb{Q}-group, with \mathbb{R}-rank $G \geqslant 2$, then no finite-index subgroup Γ of $G_{\mathbb{Z}}$ is left orderable.

In other words, if H is a connected, semisimple real Lie group, with $\mathbb{R}-\operatorname{rank} H \geqslant 2$, and Γ is an irreducible lattice in H, then Γ is not left orderable.

It is natural to propose an analogous conjecture that replaces \mathbb{Z} with a ring of S-integers, and weakens the restriction on \mathbb{R}-rank. For simplicity, let us state it only in the case where \mathbb{R}-rank $G \geqslant 1$.

Conjecture 2. If G is $a \mathbb{Q}$-simple algebraic \mathbb{Q}-group, with \mathbb{R} - $\operatorname{rank} G \geqslant 1$, and $\left\{p_{1}, \ldots, p_{n}\right\}$ is any nonempty set of prime numbers, then no finite-index subgroup Γ of $G_{\mathbb{Z}\left[1 / p_{1}, \ldots, 1 / p_{n}\right]}$ is left orderable.

In other words, if H is a product of noncompact real and p-adic simple Lie groups, with at least one real factor and at least one p-adic factor, and Γ is any irreducible lattice in H, then Γ is not left orderable.

We prove Conjecture 2 under the additional assumption that \mathbb{Q}-rank $G \geqslant 1$:
Theorem 1.1. If G is a \mathbb{Q}-simple algebraic \mathbb{Q}-group, with \mathbb{Q}-rank $G \geqslant 1$, and $\left\{p_{1}, \ldots, p_{n}\right\}$ is any nonempty set of prime numbers, then no finite-index subgroup Γ of $G_{\mathbb{Z}\left[1 / p_{1}, \ldots, 1 / p_{n}\right]}$ is left orderable.

More generally, if H is a product of real and p-adic simple Lie groups, with at least one p-adic factor, and Γ is any irreducible lattice in H, such that H / Γ is not compact, then Γ is not left orderable.

We also prove some cases of Conjecture 1 (with \mathbb{Q}-rank $G=1$). For example, we consider the case where every simple factor of $G_{\mathbb{R}}$ (or of H) is isomorphic to $\operatorname{SL}(2, \mathbb{R})$ or $\operatorname{SL}(2, \mathbb{C})$:

Theorem 1.2. If \mathcal{O} is the ring of integers of a number field F, and F is neither \mathbb{Q} nor an imaginary quadratic extension of \mathbb{Q}, then no finite-index subgroup Γ of $\operatorname{SL}(2, \mathcal{O})$ is left orderable.

In geometric terms, the theorems can be restated as the nonexistence of orientation-preserving actions on the line:

Corollary 1.3. If Γ is as described in Theorem 1.1 or Theorem 1.2, then there does not exist any nontrivial homomorphism $\varphi: \Gamma \rightarrow \operatorname{Homeo}^{+}(\mathbb{R})$.

Combining this corollary with an important theorem of Ghys [4] yields the conclusion that every orientationpreserving action of Γ on the circle S^{1} is of an obvious type; any such action is either virtually trivial or semiconjugate to an action by linear-fractional transformations, obtained from a composition $\Gamma \rightarrow \operatorname{PSL}(2, \mathbb{R}) \hookrightarrow$ Homeo $^{+}\left(S^{1}\right)$. See [5] for a discussion of the general topic of group actions on the circle.

It has recently been proved that certain individual arithmetic groups are not left orderable (see, e.g., [3]), but our results apparently provide the first new examples in more than ten years of arithmetic groups that have no left-orderable subgroups of finite index. They are also the only known such examples that have \mathbb{Q}-rank 1 .

If Γ is as described in Theorem 1.1 or Theorem 1.2, then Γ contains a finite-index subgroup of $\operatorname{SL}\left(2, \mathcal{O}_{S}\right)$, where S is a finite set of places of some algebraic number field F (containing all the archimedean places), such
that the corresponding ring \mathcal{O}_{S} of S-integers has infinitely many units. The theorems are obtained by reducing to the fact, proved by Carter, Keller, and Paige [1], that $\mathrm{SL}\left(2, \mathcal{O}_{S}\right)$ has bounded generation by unipotent elements. (That is, the fact that $\mathrm{SL}\left(2, \mathcal{O}_{S}\right)$ is the product of finitely many of its unipotent subgroups. See [7] for a recent discussion of bounded generation. Partial results were proved previously in [2] and [6].) We are also able to prove this reduction for noncocompact lattices in $\operatorname{SL}(3, \mathbb{R})$:

Theorem 1.4. Suppose Γ is a finite-index subgroup of either
(i) $\operatorname{SL}(2, \mathbb{Z}[1 / r])$, for some natural number $r>1$, or, more generally,
(ii) $\operatorname{SL}\left(2, \mathcal{O}_{S}\right)$, where S is a finite set of places of an algebraic number field F (containing all the archimedean places), such that the corresponding ring \mathcal{O}_{S} of S-integers has infinitely many units, or
(iii) an arithmetic subgroup of a quasi-split \mathbb{Q}-form of the \mathbb{R}-algebraic group $\operatorname{SL}(3, \mathbb{R})$.

If $\varphi: \Gamma \rightarrow \operatorname{Homeo}^{+}(\mathbb{R})$ is any homomorphism, and U is any unipotent subgroup of Γ, then every $\varphi(U)$-orbit on \mathbb{R} is bounded.

Corollary 1.5. Suppose

- Γ is as described in Theorem 1.4, and
- Γ is commensurable to a group that has bounded generation by unipotent elements.

Then every homomorphism $\varphi: \Gamma \rightarrow \operatorname{Homeo}^{+}(\mathbb{R})$ is trivial. Therefore, Γ is not left orderable.

2. Proof of Theorem 1.4(i)

Notation 1. For convenience, let

$$
\bar{u}=\left[\begin{array}{cc}
1 & u \\
0 & 1
\end{array}\right], \quad \underline{v}=\left[\begin{array}{cc}
1 & 0 \\
v & 1
\end{array}\right], \quad \hat{s}=\left[\begin{array}{cc}
s & 0 \\
0 & 1 / s
\end{array}\right]
$$

for $u, v \in \mathbb{Z}[1 / r]$ and $s \in\left\{r^{n} \mid n \in \mathbb{Z}\right\}$.
Suppose some $\varphi(U)$-orbit on \mathbb{R} is not bounded above. (This will lead to a contradiction.) Let us assume U is a maximal unipotent subgroup of Γ.

Let V be a subgroup of Γ that is conjugate to U, but is not commensurable to U. Then $V_{\mathbb{Q}} \neq U_{\mathbb{Q}}$. Because \mathbb{Q}-rank $\operatorname{SL}(2, \mathbb{Q})=1$, this implies that $V_{\mathbb{Q}}$ is opposite to $U_{\mathbb{Q}}$. Therefore, after replacing U and V by a conjugate under $\operatorname{SL}(2, \mathbb{Q})$, we may assume

$$
U=\{\bar{u} \mid u \in \mathbb{Z}[1 / r]\} \cap \Gamma \quad \text { and } \quad V=\{\underline{v} \mid v \in \mathbb{Z}[1 / r]\} \cap \Gamma .
$$

Because V is conjugate to U, we know that some $\varphi(V)$-orbit is not bounded above. Let

$$
\begin{aligned}
& x_{U}=\sup \{x \in \mathbb{R} \mid \text { the } \varphi(U) \text {-orbit of } x \text { is bounded above }\}<\infty \quad \text { and } \\
& x_{V}=\sup \{x \in \mathbb{R} \mid \text { the } \varphi(V) \text {-orbit of } x \text { is bounded above }\}<\infty
\end{aligned}
$$

Assume, without loss of generality, that $x_{U} \geqslant x_{V}$.
Fix some $s=r^{n}>1$, such that $\hat{s} \in \Gamma$, and let $B=\langle\hat{s}\rangle U$. Because $\langle\hat{s}\rangle$ normalizes U, this is a subgroup of Γ. Note that $\varphi(B)$ fixes x_{U}, so it acts on the interval $\left(x_{U}, \infty\right)$. Since $\varphi(B)$ is nonabelian, it is well known (see, e.g., [5, Thm. 6.10]) that some nontrivial element of $\varphi(B)$ must fix some point of $\left(x_{U}, \infty\right)$. In fact, it is not difficult to see that each element of $\varphi(B) \backslash \varphi(U)$ fixes some point of $\left(x_{U}, \infty\right)$. In particular, $\varphi(\hat{s})$ fixes some point x of $\left(x_{U}, \infty\right)$.

The left-ordering of any additive subgroup of \mathbb{Q} is unique (up to a sign), so we may assume that

$$
\varphi\left(\overline{u_{1}}\right) x<\varphi\left(\overline{u_{2}}\right) x \Leftrightarrow u_{1}<u_{2} \quad \text { and } \quad \varphi\left(\underline{v_{1}}\right) x<\varphi\left(\underline{v_{2}}\right) x \Leftrightarrow v_{1}<v_{2} .
$$

The $\varphi(U)$-orbit of x is not bounded above (because $x>x_{U}$), so we may fix some $u_{0}, v_{0}>0$, such that

$$
\varphi\left(\underline{v_{0}}\right) x<\varphi\left(\overline{u_{0}}\right) x .
$$

For any $\underline{v} \in V$, there is some $k \in \mathbb{Z}^{+}$, such that $v<s^{2 k} v_{0}$. Then, because $\varphi(\hat{s})$ fixes x and $s^{-2 k}<1$, we have

$$
\begin{aligned}
\varphi(\underline{v}) x & <\varphi\left(s^{2 k} v_{0}\right) x=\varphi\left(\hat{s}^{-k} \underline{v}_{0} \hat{s}^{k}\right) x=\varphi\left(\hat{s}^{-k}\right) \varphi\left(\underline{v}_{0}\right) x \\
& <\varphi\left(\hat{s}^{-k}\right) \varphi\left(\overline{u_{0}}\right) x=\varphi\left(\hat{s}^{-k} \overline{u_{0}} \hat{s}^{k}\right) x=\varphi\left(\overline{s^{-2 k} u_{0}}\right) x<\varphi\left(\overline{u_{0}}\right) x .
\end{aligned}
$$

So the $\varphi(V)$-orbit of x is bounded above by $\varphi\left(\overline{u_{0}}\right) x$. This contradicts the fact that $x>x_{U} \geqslant x_{V}$.

3. Other parts of Theorem 1.4

(ii) The above proof of case (i) needs only minor modifications to be applied with a more general ring \mathcal{O}_{S} of S-integers in the place of $\mathbb{Z}[1 / r]$. (We choose $s=\omega^{n}$, where ω is a unit of infinite order in \mathcal{O}_{S}.) The one substantial difference between the two cases is that the left-ordering of the additive group of \mathcal{O}_{S} is far from unique-there are usually infinitely many different orderings. Fortunately, we are interested only in left-orderings of $U=\{\bar{u} \mid u \in$ $\mathcal{O}\} \cap \Gamma$ that arise from an unbounded $\varphi(U)$-orbit, and it turns out that any such left-ordering must be invariant under conjugation by \hat{s}. The left-ordering must, therefore, arise from a field embedding σ of F in \mathbb{C} (such that $\sigma(s)$ is real whenever $\hat{s} \in \Gamma$), and there are only finitely many such embeddings. Hence, we may replace U and V with two conjugates of U whose left-orderings come from the same field embedding (and the same choice of sign).
(iii) A serious difficulty prevents us from applying the above proof to quasi-split \mathbb{Q}-forms of $\operatorname{SL}(3, \mathbb{R})$. Namely, the reason we were able to obtain a contradiction is that if $\overline{u_{0}}$ is upper triangular, \underline{v} is lower triangular, \hat{s} is diagonal, and $\lim _{k \rightarrow \infty} \hat{s}^{-k} \overline{u_{0}} \hat{s}^{k}=\infty$ under an ordering of Γ, then $\lim _{k \rightarrow \infty} \hat{s}^{-k} \underline{\underline{v}} \hat{s}^{k}=e$. Unfortunately, the "opposition involution" of $\operatorname{SL}(3, \mathbb{R})$ causes the calculation to result in a different conclusion in case (iii): if $\hat{s}^{-k} \overline{u_{0}} \hat{s}^{k}$ tends to ∞, then $\hat{s}^{-k} \underline{\underline{v}} \hat{s}^{k}$ also tends to ∞. Thus, the above simple argument does not immediately yield a contradiction.

Instead, we employ a lemma of Raghunathan [8, Lem. 1.7] that provides certain nontrivial relations in Γ. These relations involve elements of both U and V; they provide the crucial tension that leads to a contradiction.

Acknowledgements

The authors would like to thank A.S. Rapinchuk for helpful suggestions. D.W.M. was partially supported by a grant from the National Science Foundation (DMS-0100438).

References

[1] D. Carter, G. Keller, E. Paige, Bounded expressions in $\operatorname{SL}(n, A)$, preprint.
[2] G. Cooke, P.J. Weinberger, On the construction of division chains in algebraic number rings, with applications to SL_{2}, Commun. Algebra 3 (1975) 481-524.
[3] M.K. Dąbkowski, J.H. Przytycki, A.A. Togha, Non-left-orderable 3-manifold groups, preprint, math.GT/0302098.
[4] É. Ghys, Actions de réseaux sur le cercle, Invent. Math. 137 (1) (1999) 199-231.
[5] É. Ghys, Groups acting on the circle, Ens. Math. 47 (3/4) (2001) 329-407.
[6] B. Liehl, Beschränkte Wortlänge in SL_{2}, Math. Z. 186 (4) (1984) 509-524.
[7] V.K. Murty, Bounded and finite generation of arithmetic groups, in: K. Dilcher (Ed.), Number Theory, Halifax, NS, 1994, pp. 249-261; CMS Conf. Proc., vol. 15, Amer. Math. Soc., Providence, RI, 1995.
[8] M.S. Raghunathan, On the congruence subgroup problem, II, Invent. Math. 85 (1986) 73-117.
[9] D. Witte, Arithmetic groups of higher \mathbb{Q}-rank cannot act on 1-manifolds, P. Am. Math. Soc. 122 (2) (1994) 333-340.

[^0]: * Corresponding author.

 E-mail addresses: LLifschitz@math.ou.edu (L. Lifschitz), Dave.Morris@uleth.ca (D.W. Morris).
 URLs: http://www.math.ou.edu/~llifschitz/ (L. Lifschitz), http://people.uleth.ca/~dave.morris/ (D.W. Morris).

