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Abstract

We consider the lowest-order Raviart—-Thomas mixed finite element method for elliptic problems on simplicial meshes in
two or three space dimensions. This method produces saddle-point type problems for scalar and flux unknowns. We show how
to easily eliminate the flux unknowns, which implies an equiveéebetween this method andoarticular multi-point finite
volume scheme, without any approximate numerical integration. We describe the stencil of the final matrix and give sufficient
conditions for its symmetry and positive definiteness. We present a numerical example illustrating the performance of the
proposed methodo cite thisarticle: M. Vohralik, C. R. Acad. Sci. Paris, Ser. | 339 (2004).
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Résumé

Equivalence entre les méthodes des éléments finis mixtes et des volumes finis a plusieurs poMtais considérons
la méthode des éléments finis mixtes de Raviart—-Thomasugehals degré pour des problémes elliptiques sur les maillages
composés de triangles en dimension deux d'espace et de tétraedres en dimension trois d’espace. Cette méthode aboutit a ¢
problémes de type point-selle pour les inconnues scalaires et les flux. Nous montrons comment facilement éliminer les flux,
ce qui implique I'équivalence entre cette méthode et une méthode de type volumes finis a plusieurs points et ceci sans aucun
intégration numérique approchée. Nous décrivons le nombre maximal des éléments non nuls sur chaque ligne de la matrice final
et présentons les conditions suffisantes pour qu’elle soit symétrique et définie positive. Nous présentons un essai humériqu
montrant la performance de la méthode propoBéer citer cet article: M. Vohralik, C. R. Acad. Sci. Paris, Ser. | 339 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Let us consider the elliptic problem

u=-DVp in g, (1a)
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V.-u=q in§$2, (1b)
p=pp 0NdL, (1c)

where2 c R?, d = 2, 3, is a polygonal domain (open, bounded, and connected>ith bounded and uniformly
positive definite tensopp € H/?(352), and the source term fulfills ¢ € L2(£2). Inhomogeneous Neumann or
Robin boundary conditions caiso be considered.

Let 7, be a simplicial triangulation of2 (consisting of triangles it = 2 and of tetrahedra iff = 3). The
approximation of the problem (1a)—(1c) by means of the mixed finite element method consists in dinding
andp;, € @, such that (see [3])

O, vi)e — (V -V, p)a =— (Vi N, pplag Wi € Vi, (2a)
(V- up, dn)e=—(q, P2 Yon € Py. (2b)

Here,V;, and @, are suitable finite-dimnsional spaces defined @h. The associated matrix problem is saddle-
point whenD is symmetric. It can be written in the form

A B U F
(5 5)()-(5) ®

In the lowest-order Raviart—-Thomas method [5] and its three-dimensional Nédélec variant [4], the scalar un-
knownsP are associated with the elementsfandU are the fluxes through the sides (edges # 2, faces if
d = 3) of 7. Using the hybridization technique, one can decrease the number of unknowns to Lagrange multi-
pliers associated with the sides and obtain a symmetric (\izhiex) and positive definite matrix, cf. [1]. The use
of approximate numerical integration allows for the elimination of the fluxes, cf. e.g. [2]. Finally, the lowest-order
Raviart-Thomas method can be in two space dinmrssiewritten with one (new) unknown per element, see [7].

We show in this Note a new method which permits us to efficiently reduce the system (3) onto a system for the
(original) scalar unknowng only. It shows that in the lowest-order Raviart—Thomas mixed finite element method,
one can express, solving only local problems, the flux through each side using the scalar unknowns, sources, an
possibly boundary conditions assoeidtwith the elements in a neighborhoofithis side. This method is thus
equivalent to a particular multi-point finite volume scheraed this without any numerical integration. We de-
scribe the stencil of the final matrix and give sufficient conditions for its symmetry and positive definiteness. The
numerical example at the end of this paper confirms considerable computational savings while using the proposec
method. Finally, this approach seems to easily extenmbtdinear parabolic convection—reaction—diffusion prob-
lems and to higher-order schemes.

1. The elimination process

Let us denote the set of sides By. Let us consider simplicek, L € 7, sharing an interior side . Let Vg
be the vertex o opposite tar andV;, the vertex ofL opposite tos. A basis functiorv, € Vj associated with
the sides can be written in the formy, (x) = ﬁ(x — Vi), X€ K, Vs (X) = ﬁ(VL —X),X€ L, Vg (X) = [0]¢
otherwise. Her¢K | is the volume of the elemetit. We fix its orientation, i.e. the order & andL. For a boundary
sideo, the support of/, only consists ok € 7, such thatr ¢ 9K . A basis functionpx € @, associated with an
elementk € 7, is equal to 1 oK and to O otherwise.

Let us denote by, the set of all vertices and considére V;,. We call the set of all elements @}, sharing this
vertex aclusterassociated witlV and denote it b’y . Let us denote by the set of all sides afy, by Fy the
set of all the sides sharing, and byGy the set of the other sides 6f. We havefy = Fy U Gy, Fy NGy = 0.
Let us now consider Egs. (2a) for the basis functiepsy € Fy. We remark that the supportof al} , y € Fy, is
included inCy and thauixlc, =, ¢, UsVo. This leads, using also thai, |x = Px and denotindd~" = (D~ 1Y,

Z Us (Vo, D7V, — Z Px(V-vy, Dk =—(vy-N,pplan Yy eFv, (4)
ey KeCy
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i.e. |Fy| = card Fy) equations. We now notice that the cluster is constructed sddhat= |Gy |, and hence we
can consider Eqgs. (2b) for aplx, K € Cy, which gives

— Y Us(V-Vo, Dk =—(q, Dk VK €Cy, (5)
UE(‘;K
wherefg stands for the sides of the elemédnt The matrix problem associated with (4)—(5) can be expressed
(Av <cv><U5>_<—IB%fvPv+Fv> -
Dy Iy Ug B Gy ’

WhereU‘f ={Us}oery, Ug ={Us}oegy,» andPy = {Pg}k<c, - The identity matrixly comes from the fact that,
for o € Gy, there is only on& € Cy such thab € £k, and using thatV - v,, 1) = £1. We have multiplied the
equation forK € Cy by —1 whenever it was necessary.

Considering the second equation of (6), we have

(Ay —CyDy)U{ = —B!, Py + Fy —CyGy (7)

for each verteXy € V. Let us call the matribMy = Ay — CyDy alocal condensation matriassociated with

V. It is clear that it now suffices to invelily for eachV € V), to obtain the flux unknowns as functions of

the scalar unknowns, sources, and boundary conditionsaimsért this expression into the second equation

of (3) to obtain a system for the scalar unknowns only. It appears that in some particular cases, thBlnadrix

not invertible. The approaches how to modify the proposed technique in order to overcome this difficulty, which
resembles the presence of ‘singular’ triangles in the method of [7], are studied in [6]Mifyalhre invertible,

we can associate weightg, 1 <i <d, Zle ol =1, with eacho € &, and multiply the expression fdv,

from Cy, by o’ for the d clustersCy, such thato € Fy,. We finally obtainyU = A~1(—B'P + F) 4+ JG and
—BA~1B'P = G — BA~1F — BJG. We have the following results. We refer to [6] for the proofs.

Theorem 1.1.Let My be invertible for allV € V,. Then on a row of the final matri®A 1B’ corresponding to
an elemenk € 7, the only possible nonzero entries are on columns correspondihg:t@;, such that and L
share a common vertex.

The assertion of this theorem follows from the fact that by (7), the flux across & sglexpressed only using
the scalar unknowns of the elemeiitss 7;, such thatk ando share a common vertex.

Theorem 1.2.LetMy be positive definite for alV € V,. Then with the choice of the weights = 1/d, 1<i < d,
o € &, the final matrixBA 1B’ is also positive definite.

A simple sufficient condition foMy for all V € V, to be positive definite, fof = 2, is that

2(v1— V3, D7'v1)g > (V2 — V3, D'V1)k + (V1 — V3, D 'vo)k|

for all possible ordering of basis functiong associated with the edges &f and oriented outward fromk, for

all K € 7;,. The right-hand side of this inequality equals to zero wbhgp is constant and scalar and whé&n
is equilateral and grows with deforminj. Other (less restrictive) conditions fdr= 2, 3 are given in [6]. The
condition for the positive definiteness may allow angles much greatertfi&an

Theorem 1.3.Let I\\/Jl;l be symmetric for alV € V. Then with the choice of the weight§ = 1/d, 1<i < d,
o €&, the final matrixBA 1B’ is also symmetric.

One can check thm;l are symmetric for equilateral simplices aldgiecewise constant and scalar.
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Table 1

Elimination onto scalar unknowns associated with triangles
Tableau 1

Elimination sur les inconnues scalaires associées aux triangles

Refinements Unknowns Cond. no. Bi-CGStab (sec.) No. iter.
3 1024 721 @0 765

4 4096 2882 43 1475

5 16384 11523 135 2955

6 65536 46093 1138 5555

Table 2

Hybridization onto Lagrange multipliers associated with edges

Tableau 2

Hybridisation sur les multiplicateurs de Lagrange associés aux arétes

Refinements Unknowns Cond. no. Bi-CGStab (sec.) No. iter. CG (sec.) No. iter.
3 1504 1397 31 1180 0.22 157

4 6080 5616 23 2305 175 316

5 24448 22499 230 4495 1687 623

6 98048 89995 2204 8640 16209 1226

2. Numerical example

Let us considef2 = (0,1) x (0,1), D=1d, g = —2€" €, and pp given by the solutiorp(x, y) = e*e’. We
perform the computations, using a notebook with Intel Pentium 4-M 1.8 GHz processor, on an unstructured trian-
gular mesh of2 which we refine regularly. We consider the method proposed in this paper and the hybridization
onto Lagrange multipliers. In both cases the system matrices are positive definite but they are symmetric only in
the latter case. We compare the number of unknownsysterm matrices condition number, and the CPU time and
the number of iterations of the Bi-CGStab method to solve the associated matrix problems. For the hybridization,
we consider also the CG method.
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