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Abstract

We consider the lowest-order Raviart–Thomas mixed finite element method for elliptic problems on simplicial me
two or three space dimensions. This method produces saddle-point type problems for scalar and flux unknowns. We
to easily eliminate the flux unknowns, which implies an equivalence between this method and aparticular multi-point finite
volume scheme, without any approximate numerical integration. We describe the stencil of the final matrix and give s
conditions for its symmetry and positive definiteness. We present a numerical example illustrating the performanc
proposed method.To cite this article: M. Vohralík, C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Equivalence entre les méthodes des éléments finis mixtes et des volumes finis à plusieurs points.Nous considérons
la méthode des éléments finis mixtes de Raviart–Thomas de plus bas degré pour des problèmes elliptiques sur les maill
composés de triangles en dimension deux d’espace et de tétraèdres en dimension trois d’espace. Cette méthode a
problèmes de type point-selle pour les inconnues scalaires et les flux. Nous montrons comment facilement élimine
ce qui implique l’équivalence entre cette méthode et une méthode de type volumes finis à plusieurs points et ceci sa
intégration numérique approchée. Nous décrivons le nombre maximal des éléments non nuls sur chaque ligne de la ma
et présentons les conditions suffisantes pour qu’elle soit symétrique et définie positive. Nous présentons un essai
montrant la performance de la méthode proposée.Pour citer cet article : M. Vohralík, C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Let us consider the elliptic problem

u = −D∇p in Ω, (1a)
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∇ · u = q in Ω, (1b)
p = pD on∂Ω, (1c)

whereΩ ⊂ Rd , d = 2,3, is a polygonal domain (open, bounded, and connected set),D is a bounded and uniforml
positive definite tensor,pD ∈ H 1/2(∂Ω), and the source termq fulfills q ∈ L2(Ω). Inhomogeneous Neumann
Robin boundary conditions canalso be considered.

Let Th be a simplicial triangulation ofΩ (consisting of triangles ifd = 2 and of tetrahedra ifd = 3). The
approximation of the problem (1a)–(1c) by means of the mixed finite element method consists in findinguh ∈ Vh

andph ∈ Φh such that (see [3])

(D−1uh,vh)Ω − (∇ · vh,ph)Ω = −〈vh · n,pD〉∂Ω ∀vh ∈ Vh, (2a)
−(∇ · uh,φh)Ω = −(q,φh)Ω ∀φh ∈ Φh. (2b)

Here,Vh andΦh are suitable finite-dimensional spaces defined onTh. The associated matrix problem is sadd
point whenD is symmetric. It can be written in the form(

A Bt

B 0

)(
U

P

)
=

(
F

G

)
. (3)

In the lowest-order Raviart–Thomas method [5] and its three-dimensional Nédélec variant [4], the sc
knownsP are associated with the elements ofTh andU are the fluxes through the sides (edges ifd = 2, faces if
d = 3) of Th. Using the hybridization technique, one can decrease the number of unknowns to Lagrang
pliers associated with the sides and obtain a symmetric (whenD is) and positive definite matrix, cf. [1]. The us
of approximate numerical integration allows for the elimination of the fluxes, cf. e.g. [2]. Finally, the lowest
Raviart–Thomas method can be in two space dimensions rewritten with one (new) unknown per element, see [

We show in this Note a new method which permits us to efficiently reduce the system (3) onto a system
(original) scalar unknownsP only. It shows that in the lowest-order Raviart–Thomas mixed finite element me
one can express, solving only local problems, the flux through each side using the scalar unknowns, sou
possibly boundary conditions associated with the elements in a neighborhoodof this side. This method is thu
equivalent to a particular multi-point finite volume scheme, and this without any numerical integration. We d
scribe the stencil of the final matrix and give sufficient conditions for its symmetry and positive definitenes
numerical example at the end of this paper confirms considerable computational savings while using the p
method. Finally, this approach seems to easily extend tononlinear parabolic convection–reaction–diffusion pr
lems and to higher-order schemes.

1. The elimination process

Let us denote the set of sides byEh. Let us consider simplicesK,L ∈ Th sharing an interior sideσ . Let VK

be the vertex ofK opposite toσ andVL the vertex ofL opposite toσ . A basis functionvσ ∈ Vh associated with
the sideσ can be written in the formvσ (x) = 1

d |K |(x − VK), x ∈ K, vσ (x) = 1
d |L|(VL − x), x ∈ L, vσ (x) = [0]d

otherwise. Here|K| is the volume of the elementK. We fix its orientation, i.e. the order ofK andL. For a boundary
sideσ , the support ofvσ only consists ofK ∈ Th such thatσ ⊂ ∂K. A basis functionφK ∈ Φh associated with an
elementK ∈ Th is equal to 1 onK and to 0 otherwise.

Let us denote byVh the set of all vertices and considerV ∈ Vh. We call the set of all elements ofTh sharing this
vertex aclusterassociated withV and denote it byCV . Let us denote byEV the set of all sides ofCV , by FV the
set of all the sides sharingV , and byGV the set of the other sides ofCV . We haveEV = FV ∪ GV , FV ∩ GV = ∅.
Let us now consider Eqs. (2a) for the basis functionsvγ , γ ∈FV . We remark that the support of allvγ , γ ∈FV , is
included inCV and thatuh|CV

= ∑
σ∈EV

Uσ vσ . This leads, using also thatph|K = PK and denotingD−t = (D−1)t ,
∑

σ∈E
Uσ (vσ ,D−tvγ )CV

−
∑

K∈C
PK(∇ · vγ ,1)K = −〈vγ · n,pD〉∂Ω ∀γ ∈ FV , (4)
V V
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i.e. |FV | = card(FV ) equations. We now notice that the cluster is constructed so that|CV | = |GV |, and hence we
can consider Eqs. (2b) for allφK , K ∈ CV , which gives

−
∑

σ∈EK

Uσ (∇ · vσ ,1)K = −(q,1)K ∀K ∈ CV , (5)

whereEK stands for the sides of the elementK. The matrix problem associated with (4)–(5) can be expressed(
AV CV

DV IV

)(
UF

V

UG
V

)
=

(−Bt
V PV + FV

GV

)
, (6)

whereUF
V = {Uσ }σ∈FV

, UG
V = {Uσ }σ∈GV

, andPV = {PK }K∈CV
. The identity matrixIV comes from the fact tha

for σ ∈ GV , there is only oneK ∈ CV such thatσ ∈ EK , and using that(∇ · vσ ,1)K = ±1. We have multiplied the
equation forK ∈ CV by −1 whenever it was necessary.

Considering the second equation of (6), we have

(AV − CV DV )UF
V = −B

t
V PV + FV − CV GV (7)

for each vertexV ∈ Vh. Let us call the matrixMV = AV − CV DV a local condensation matrixassociated with
V . It is clear that it now suffices to invertMV for eachV ∈ Vh to obtain the flux unknowns as functions
the scalar unknowns, sources, and boundary conditions and to insert this expression into the second equa
of (3) to obtain a system for the scalar unknowns only. It appears that in some particular cases, the matrMV is
not invertible. The approaches how to modify the proposed technique in order to overcome this difficulty
resembles the presence of ‘singular’ triangles in the method of [7], are studied in [6]. If allMV are invertible,
we can associate weightsαi

σ , 1 � i � d ,
∑d

i=1 αi
σ = 1, with eachσ ∈ Eh and multiply the expression forUσ

from CVi by αi
σ for the d clustersCVi such thatσ ∈ FVi . We finally obtainU = Ã−1(−BtP + F) + JG and

−BÃ−1BtP = G − BÃ−1F − BJG. We have the following results. We refer to [6] for the proofs.

Theorem 1.1.Let MV be invertible for allV ∈ Vh. Then on a row of the final matrixBÃ−1Bt corresponding to
an elementK ∈ Th, the only possible nonzero entries are on columns corresponding toL ∈ Th such thatK andL

share a common vertex.

The assertion of this theorem follows from the fact that by (7), the flux across a sideσ is expressed only usin
the scalar unknowns of the elementsK ∈ Th such thatK andσ share a common vertex.

Theorem 1.2.LetMV be positive definite for allV ∈ Vh. Then with the choice of the weightsαi
σ = 1/d , 1� i � d ,

σ ∈ Eh, the final matrixBÃ−1Bt is also positive definite.

A simple sufficient condition forMV for all V ∈ Vh to be positive definite, ford = 2, is that

2(v1 − v3,D−tv1)K >
∣∣(v2 − v3,D−tv1)K + (v1 − v3,D−tv2)K

∣∣
for all possible ordering of basis functionsvi associated with the edges ofK and oriented outward fromK, for
all K ∈ Th. The right-hand side of this inequality equals to zero whenD|K is constant and scalar and whenK

is equilateral and grows with deformingK. Other (less restrictive) conditions ford = 2,3 are given in [6]. The
condition for the positive definiteness may allow angles much greater thanπ/2.

Theorem 1.3.Let M
−1
V be symmetric for allV ∈ Vh. Then with the choice of the weightsαi

σ = 1/d , 1 � i � d ,

σ ∈ Eh, the final matrixBÃ−1Bt is also symmetric.

One can check thatM−1
V are symmetric for equilateral simplices andD piecewise constant and scalar.
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Table 1
Elimination onto scalar unknowns associated with triangles

Tableau 1
Elimination sur les inconnues scalaires associées aux triangles

Refinements Unknowns Cond. no. Bi-CGStab (sec.) No.

3 1024 721 0.20 76.5
4 4096 2882 1.43 147.5
5 16384 11523 12.55 295.5
6 65536 46093 117.58 555.5

Table 2
Hybridization onto Lagrange multipliers associated with edges

Tableau 2
Hybridisation sur les multiplicateurs de Lagrange associés aux arêtes

Refinements Unknowns Cond. no. Bi-CGStab (sec.) No. iter. CG (sec.) No

3 1504 1397 0.31 118.0 0.22 157
4 6080 5616 2.43 230.5 1.75 316
5 24448 22499 23.40 449.5 16.87 623
6 98048 89995 227.04 864.0 162.09 1226

2. Numerical example

Let us considerΩ = (0,1) × (0,1), D = Id, q = −2 ex ey , andpD given by the solutionp(x, y) = ex ey . We
perform the computations, using a notebook with Intel Pentium 4-M 1.8 GHz processor, on an unstructure
gular mesh ofΩ which we refine regularly. We consider the method proposed in this paper and the hybrid
onto Lagrange multipliers. In both cases the system matrices are positive definite but they are symmetric
the latter case. We compare the number of unknowns, the system matrices condition number, and the CPU time
the number of iterations of the Bi-CGStab method to solve the associated matrix problems. For the hybrid
we consider also the CG method.
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