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Abstract

Stochastic Calculus of variations deals with maps defined on the Wiener space, with finite dimensional range; within this
context appears the notion nbn-degenerate mapvhich corresponds roughly speaking to some kind of infinite dimensional
ellipticity; a non-degenerate map has a smooth law; by conditiprit generates a continuous desintegration of the Wiener
measure. Infinite dimensional Stochastic Analysis and particularly SPDE theory raise the natural question of what can be done
for maps with an infinite dimensional range; our approach to this problem emphasizes an intrinsic geometric aspect, replacing
range by generategl-field and its associated foliation of the Wiener spakecite this article: H. Airault et al., C. R. Acad.

Sci. Paris, Ser. | 339 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Géométrie des foliations sur I'espace de Wiener et calcul des variations stochastiques. Le Calcul Stochastique des
variations considére classiquement des applications deatespe Wiener dans un espace de dimension finie ; dans ce contexte
s’inscrit la théorie deapplications non dégénérépsur lesquelles on peut établir la régularité des lois ainsi que I'existence de
désintégrations continues. L'Analyse stochastique en dimension infinie et singulierement la théorie des SPDE, pose la questiol
naturelle de I'étude des applications de I'espace de Wienes da espace de dimension infinie. Nous approchons ce probleme
de maniere intrinseque, privilégiant I'étude géometrique des sous tribus a travers leurs foliations af3maiéeter cet
article: H. Airault et al., C. R. Acad. Sci. Paris, Ser. | 339 (2004).
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1. Introduction: the theory of non-degenerate maps

We work on an abstract Wiener spakey is its canonical Wiener measure; denotefbyhe Cameron—Martin
space, that is the Hilbert space of comstaector fields for which the measuyues quasi-invariant under translation
by a vector ofH . Denote byD? (X) the Sobolev space of functions which arémes differentiable relatively téf,
with all their derivatives belonging taj;. Let D* (X) :=(1,_., Df (X). Consider a mag : X — R, g =
(g1,...,84)- Assume thag; Dgof (X); then define the x d covariance matriy; ; = (Vg;|Vg;); the mapg is
said to be non-degenerate, if almost surely the madrixis invertible and if, denoting ** its inverse matrix, then
y"/ e LY, an hypothesis which implies that-/ € DJ° (X). The canonical lift toX of the coordinate vector
field % is defined as

d
Zian(@) =Y v (@) (Vgi) (@), wehave (ZlalZi) =v'". (1)
i=1

The hypothesisg non-degenerate implies tha® € D° (X; H) and Z* has a divergence relatively to the
Gaussian measure, lets, (Z*) e LY (X).

/8M(Z5)w du =— /(ZSWW) du for any differentiable function, on X. (2)

Denotev = g, () the law ofg, g.(n)(A) = u(g~1(A)). Then the divergence q;% relative tov is the conditional
expectation of the divergence @f relatively topu,

5”(3%) = E%(8,(Z%)) 3)

consequentlyzv(a%) € L% , andv has an Holderian density relatively to the Lebesgue measure. More generally,
we call a lift by g of -2, a vector fieldZ* such that

08’
Z¥(hog) = ih 4)
0g)= 8& 0g.
It satisfies (4) if and only i{Z°|Vg,) = 1 and(Z°|Vgr) =0 if k £ 5. Moreover, there is a unique lift by of %
in the space generated bYg;) =14, thisis given byZ¢,,,
Conditioning by a non-degenerate map preserves differentialfifypage 82). For any IlifZ* by g of % and
such that the divergendg (Z;) exists, we have
d _
—ES(f) — E$(Dzs /) = E¥ (8, (Z°) f) — E5(8,(Z%)) X ES(f), V[feD (X). (5)

9&s
With (3) and (5), divergences of lifts play a key role. An analytic expression of the divergence of the canonical lift
has been given in coordinates in [5], page 71. In this Note, we give alternative geometric expressions free from
coordinates which could be used in the case dields (see [3,4,6]).

2. Lifting and Lie derivatives

A vector field Z on X is calledbasicif Z € D* (X; H) and if Dzg; = (Z|Vg,) is g-measurable for all
s €[1,d]. Thus, if Z is basic,

(Z@)Vgs@) =5 (s@). s=1.....d. ©)
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A vector field Z on X is calledg-basically constant iDzg, is constant for any € [1, d]. In particular, any lift
by g of a constant vector field ig-basically constant. Let € R?, then a lift by¢ o g of a constant vector field is
basic. If a basic vector field is in the normal space, then (compare with (1)),

Z(@) =) z%(8()) Zan(). (7)
k
In the following, unless it is precised, for lift, we mean a lift pyLetw = dg1 A --- A dgy.
Proposition 2.1. The Lie derivative otz relatively to any basically@nstant vector field vanishes.

Proof. We use the Cartan formuldz = i(Z) d+ di(Z), wherei(Z) denotes the interior product [¥%. We have
Lz(dg) =d(Dzg). As dw = 0, the first term of Cartan formula disappears. We obtéfw = (Dzg1) x dg2 A
---dgg + - - -, expression which has a vanishing boundam.

2.1. The duality

We denote bys2 the differential form of degreeo which is the ‘volume form’ associated to the Gaussian
measureu. LetC be the differential form of degres — d given byC =i(w)£2,1.e.C A = £2.

Proposition 2.2. The unnormalized conditional expectation is giverH#sy 1) (&) = fg—l(s) fxC.

Proof. For f: X — R, the unnormalized conditional expectation is given by (see [1])

Eifl@= [ f)/del @)@, acr,

PRl ()

Denote|awr | = /det((Vg;|Vgr)). Theoo — d Gaussian areaadsatisfies d A % =02.Thus % A = 2. As

||
% corresponds to the conditional law, the proposition is proveul.

Theorem 2.3. Let Z be a basically constant vector field, then the Lie derivatly€ = §,,(Z) x C.
Proof. $,(Z)y x 2=Lz(2)=LzC)"w +CALzo=Lz7C)Aw. O

Remark 1. Theorem (2.3) reduces the derivative of a conditional expectation to a Skorokhod integral on the Wiener
space. With Proposition 2.2, it gives a geometrical proof of (5).

3. Canonical formsof afoliation: curvatureand proximity

To avoid the difficulty of selecting versions of maps, we consider the case whésea finite dimensional
Euclidean space with its canonical Gaussian measure; then by Sobolev embéxfdling) is contained in the
set of continuous functions; we always take the continuous versions. Since the estimates that we obtain are in:
dependent of the dimension &f, they stay valid for the infinite dimerwmhal case, that is the Wiener space. Let
g = (g1,82,...,84): X — R? be a non-degenerate map. @n we define the equivalence relatien7 w if
g(w1) = g(wp). Sinceg(wy) = g(wp) implies thatp (g(w1)) = ¢(g(w2)) for any diffeomorphismp of R, the
relation7 depends only on the-field generated by th¢ o g, ¢ < diff (R?). Let N,, be the normal suspace at

,,,,,

form a basis otv,,.
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Proposition 3.1. Consider the normal spaceg,, andN,,, at two different points; andw,. There exists a unique
linear mappingry, «w, : Np; = Nu, such thatr,,, ., (n1) = ny is given by

(dgk(a)l),n]_):<dgk(a)2),n2> fork=1,...,d. (8)

With the basis (Vg;(w1))j=1,.a4 for N, and (Vg;j(w2))j=1,..4 for N.,, the matrix of 7,, ., Is
¥ (w2) y«x (w1). Because of (4), the image by, ., of the canonlcalllflzcan(wl) is ann(a)z) If g(w1) = g(w2),
thent,,«, is the same for ango g, wheng € R¢. Forh € H, let

d d . .d
Zéan(w +€h) = Y (@ + eh)yjp(w) Zian(w) + v —

- Vgi h). 9

de |e= de \e—o de |e=0 gi(@+eh) ©)
Since(Z{,|Vegs) =1, we obtain

d s d 5
2;<&e_ozcan(w + eh)‘Vgs (w)> = ; deezo” Nw+eh)yjs(w). (10)
Forwe X, X = R™ andh € H, H = R™, consider the matrix
d d
B(w; h) = [ 4 Yy (w +6h)} Vax (@) = —V**(w)[ Vax (@ +6h)} . (11)
le=0 le=0

The map(w, h) — B(w; h) from X x H — End(Rd) is called theproximity formof the foliationg. We define
g](a)) H x H— R by Vzgj(a))(Y Z)y=>%1. » 0&65 (w)YrZ,. We have

d
3V @+ M=o ={V2i (@) (h, V(@) + Vg (@) (h, Vei (@)} ;. (12)
The orthogonal projection oN,, of (9) is Proj, %lezozgan(w +eh) =), as (W) Z{,(w) with
a5 (@) = Bl; h)sr + Y V22 (h, Ve )y?* ==V, (h, Zia). (13)

J
The tangent spack, is the subspace df € H such thatVgi(w)|h) =0fork=1,...,d.

Theorem3.2.Forh e H,

d . 1
Z<&€_0Zéan(w +€h) ‘Vgs (w)) =— Z V2 ()(Zla(w), h) = > traceB (w; h). (14)
N j

and forh e T,,, (14)is the same for ang o g, wheng varies indiff (R?).

From (13), we see that taking the derivative of the map_,, tangentially to a leaf, defines a connection on
the normal fiber bundle of the foliation. This connection has a curvature equal to zero and it is integrable. The
proximity form is the sum of this connection with the transposed connection.

Remark 2.n (14), if h ¢ T,,, then forg = (¢1, ¢2, ..., ¢a) € diff (RY),
Y V2 09)(@)(Z&n* ) = Z V2 (Z&n h) + (V log(detjacd) (s (@) 1h).

For non-degenerage: X — R, the second fundamental formats (see [2])
18(h1,ha) =) y" V28, (h1, ho)Ves =Y Vg (h1,h2) Zgay (15)
r,s r
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If hy or h is in the tangent spack,, thenl? ¢ (h1, ho) = 15 (h1, ho) for any diffeomorphisnp of R?. In that
case, we denotk,(h1, ko). Consider

82gr r
Li =traceyxpy lf)(‘, o) = Z(; 8—<§](2>an” (16)
) . 82 92
From (1) and (16), it hold6L | ZSui(@)) = X, ; ¥ (w)%kz’(w) and(Lo|Ve' (@) = Yy (Lgiz ().

Theorem 3.3. Y ;, V2gi()(Zlan Vg () Zkan=tracey, x,, 5 (e. ).

We define the total curvature of the leafats

Co, =tracer, 7, ln(e, @) = LE —tracey, xn,, I5 (e, @) a7)
The proximity form is given in terms of the trilinear form
af (ha, h, h3) = — Z ¥ (@) (18 (h1, Vgp(@)) [h2) (Vs (@) |h3). (18)
DS

If hy € T, then for any diffeomorphism of RY, a8 (h1, ho, ha) = o (h1, ho, h3).

4. The canonical form of afoliation

Form > d, we consider differentiable mags= (g1, g2. ..., g4) : R™ — R¢, non-degenerate at 0, i.e. the matrix
v (0) is invertible. We define the equivalence relations:

(1) g1 ~ g2 if there existsp, a diffeomorphism olR?, ¢ € diff (R?) such thatgr = ¢ 0 g1.

(2) g1V g2 if [g1(§) — g2(&) ] < constantx [|£ |13 when|i] — 0.

Let (~, v) be the equivalence relation on the set of differentiable maps f8rto R, obtained by superposing
the two equivalence relations andv.

Theorem 4.1. In any equivalence class for~, v), there is a unique mag — n(¢) from R™ to Ri with
the foIIowingAproperties: There exist an orthonormal bagig) j—1,.. , of R™, for £ ¢ R", £ = Z?zlé;ej +
Y i—di1...mEjej, and an orthonormal basigf;)j=1...« of R?, for n € RY, n=3",_; ,n;f; such that

,,,,,,,,,,

dti
~ 2 . = :
for i =1,....d, we haveni(§) = & + qi(§) + Bi(€.§) where§ = (0,....0,&1, ... &) and & =

m—d times

=2 AR —— . . . -
(¢1,...,&4, 0,...,0). ¢; is an homogeneous polynomial of deglesnd B; is a bilinear form.

This reduction is called theanonical form of the foliationThe equivalence relatiop~, ) respects the Euclid-
ean structure oR™ and that ofR?. For the study of laws of random variables defined on the Wiener space
the Euclidean structure df is relevant, while on the image spagé, only the volume structure is needed. For
w € R™, let

P N
= ~ ~

g@) =&+ g€ + B8, k=1...d o=(8), EcR EeR" (19)
The vector fieldv g, has for components

~ 0 ~ 2
(Ve (w) =8 + Bi(es, &), se[l.dl; [ng]s(w)=aé qr(§) + Br(§,e5), seld,n], (20)

s

where(es, ..., eq, €q+1, - - ., en) is the canonical basis dt”. Thusy,.(0) = Ir.. The divergencéVg; of Vg
relatively to the Lebesgue volume is
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3%qk

e (21)

0
— traceyu V2gi(0)(e, @) =~ ag Vel = >

s s>d

The normal space at 0 is the setof RY and the tangent space at 0 is the sét afR™ <. The second fundamental

,,,,,

EndR?) by
_4d
"~ deje=0

Then(B(0; £)) jx = —[p&) jx + pE)xjl and(p(§)) jx = B; (ex, §) = V2g; (€, Vi (0)).

P& G =(B,EH),_, torenco whereh = (&, ). (22)

Remark 3.Forj=1,...,d, we can obtain a IiftZ,{mX of % using the proximity endomorphism: Lgt X — R?

defined byn; (¢) = & + ¢: (§) + [ i (é)é)]i, fori =1,...,d and consider the matrix; = ((I + p(£))~Yy;, then
d
; A~ 0 . . .
Z;j)roxz kaj @)? are respectively lifted vector fields 8f,, j=1,...,d. (23)
k=1 k

The vector fieIds(Z(,',ox(g)) have a simple expression, but they are not in the normal spaa@nd they are not

defined everywhere since the mat¢ix+ p(£)) is not always invertible. For the canonical lifts, this difficulty does
not occur.

With (11)—(17), and (21), (22), we obtain the divergences of canonical lifts as trace of the curvature and prox-
imity forms.

Theorem 4.2. For the gradient vector fields, it holdg (Vg*) (w) = (0w —Cu|Vg* (w)) and for the enonical lifts(1),

1
Su(Zia) (@) = (0 — ColZiyy — > traces (w; Ziay, (24)

wheretraces (w; ZZ,,) is given by(14).

For a basic vector fiel& in the normal space, see (7), the formula (24) extends with the additionabiérim
the divergence with respect to= g x u of the vector fieldz =} z;9; on R? deduced from (7). In infinite
dimension, the scalar produ@t| Z) involves a Skorokhod stochastic integral.
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