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Abstract

Hilbert proved that a non-negative real quartic formf (x, y, z) is the sum of three squares of quadratic forms. We give a
proof which shows that if the plane curveQ defined byf is smooth, thenf has exactly 8 such representations, up to equivale
They correspond to those real 2-torsion points of the Jacobian ofQ which are not represented by a conjugation-invariant div
onQ. To cite this article: V. Powers et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une nouvelle approche du théorème de Hilbert sur les quartiques ternaires. Hilbert a démontré qu’une forme réelle no
négativef (x, y, z) de degré 4 est la somme de trois carrés de formes quadratiques. Nous donnons une nouvelle dém
qui montre que si la courbe planeQ definie parf est non singulière, alorsf a exactement 8 telles représentations, à equival
près. Elles correspondent aux points de 2- torsion du jacobien deQ qui ne sont pas représentés par un diviseur deQ invariant
par conjugaison.Pour citer cet article : V. Powers et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

A ternary quartic formis a homogeneous polynomialf (x, y, z) of degree 4 in three variables. Iff has real
coefficients, thenf is non-negativeif f (x, y, z) � 0 for all realx, y, z. Hilbert [4] showed that every non-negati
real ternary quartic form is a sum of three squares of quadratic forms. His proof (see [7,8] for modern exposition
was non-constructive: The mapπ : (p, q, r) �−→ p2 + q2 + r2 from triples of real quadratic forms to non-negat
quartic forms is surjective, as it is both open and closedwhen restricted to the preimage of the (dense) connect
set of non-negative quartic forms which define a smooth complex plane curve. An elementary and construc
approach to Hilbert’s theorem was recently begun by Pfister [5].

A quadratic representationof a complex ternary quartic formf = f (x, y, z) is an expression

f = p2 + q2 + r2 (1)

wherep, q , r are complex quadratic forms. A representationf = (p′)2 + (q ′)2 + (r ′)2 is equivalentto this if
p,q, r andp′, q ′, r ′ have the same linear span in the space of quadratic forms.

Powers and Reznick [6] investigated quadratic representations computationally, using the Gram matrix
of [1]. In several examples of non-negative real ternary quartics, they found 63 inequivalent representati
sum of three squares of complex quadratic forms and 15 were sums or differences of squares of real fo
explain these numbers, in particular the number 15, and show that precisely 8 of the 15 are sums of squa

If the complex plane curveQ defined byf = 0 is smooth, it has genus 3, and so the JacobianJ of Q has 26−1=
63 non-zero 2-torsion points. Coble [2, Chapter 1, §14] showed that these are in one-to-one corresponde
equivalence classes of quadratic representations off . If f is real, thenQ andJ are defined overR. The non-zero
2-torsion points ofJ (R) correspond tosigned quadratic representationsf = ±p2

1 ± p2
2 ± p2

3, wherepi are real
quadratic forms. Iff is also non-negative, the real Lie groupJ (R) has two connected components, and hence
24 − 1 = 15 non-zero 2-torsion points. We use Galois cohomology to determine which 2-torsion points give
sum of squares representations overR.

Theorem 1.1. Suppose thatf (x, y, z) is a non-negative real quartic form which defines a smooth plane curvQ.
Then the inequivalent representations off as a sum of three squares are in one-to-one correspondence wit
eight2-torsion points in the non-identity component ofJ (R), whereJ is the Jacobian ofQ.

2. Quadratic representations of smooth ternary quartics

Let f (x, y, z) be an irreducible quartic form overC, and letQ be the curvef = 0 in the complex projective
plane. Assume thatQ is smooth. The Picard group Pic(Q) of Q is the group of Weil divisors onQ, modulo divisors
of rational functions. LetJ be the Jacobian ofQ, so thatJ is the identity component of Pic(Q). The following
proposition is due to Coble [2, Chapter 1, §14].

Proposition 2.1. The non-trivial2-torsion points ofJ are in one-to-one correspondence with the equivale
classes of quadratic representations off .

Proof. Given a quadratic representation (1), consider the mapϕ :P2 → P2, x �→ (p(x) : q(x) : r(x)). The image
of Q underϕ is the conicC defined by the equationy2

0 + y2
1 + y2

2 = 0. Lety be any point inC, thenϕ∗(y) is an
effective divisor of degree 4 that is not the divisor of a linear form. Indeed, after a linear change of coor
we can assumey = (0 : 1 : i). A linear form vanishing onϕ∗(y) would divide each conicαp + β(q + ir) through
ϕ∗(y), and thus would dividef = p2 + (q + ir)(q − ir), contradicting the irreducibility off .

Fix a linear form�, thenL := div(�) is an effective divisor of degree 4 onQ. Let ζ = [ϕ∗(y) − L]. Since 2y
is the divisor of a linear form (the tangent line toC at y), ϕ∗(2y) is the divisor onQ of a quadratic form. Thu
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2ζ = 0. Moreover,ζ �= 0 asϕ∗(y) is not the divisor of a linear form. The 2-torsion pointζ of J depends only upon
the mapϕ.

Conversely, suppose thatζ ∈ J (C) is a non-zero 2-torsion point. LetD �= D′ be effective divisors which repre
sent the classζ + [L] in Pic(Q). As Q has genus 3, the Riemann–Roch Theorem implies that there is a pe
such divisors. Then 2D, 2D′ andD + D′ are effective divisors of degree 8, and are linearly equivalent to 2L, the
divisor of a conic. Again, the Riemann–Roch Theorem implies that there are quadratic formsq0, q1 andq2 so that

div(q0) = 2D, div(q1) = 2D′ and div(q2) = D + D′.

Therefore, the rational functiong := q0q1/q
2
2 on Q is constant. Scalingq1 andq2 appropriately, we may assum

that g ≡ 1 on Q and also thatf = q0q1 − q2
2. Diagonalizing the quadratic formq0q1 − q2

2 gives a quadratic
representation forf . This defines the inverse of the previous map.�

3. Quadratic representations of real quartics

Suppose now thatf is a non-negative real quartic form defining a smooth real plane curveQ with complexi-
ficationQC = Q ⊗R C. The elements of Pic(Q) can be identified with those divisor classes in Pic(QC) that are
represented by a conjugation-invariant divisor. LetJ be the Jacobian ofQ.

If ζ ∈ J (C) is the 2-torsion point corresponding to a signed quadratic representation

f = ±p2 ± q2 ± r2

consisting of real polynomialsp, q , r, thenζ = ζ̄ , i.e.,ζ ∈ J (R).
Conversely, let 0�= ζ ∈ J (R) with 2ζ = 0, and letL be the divisor onQ of a linear form�. We can choose a

effective divisorD �= 	D onQC representing the classζ +[L]. Then 2D, 2	D andD + 	D are each equivalent to 2L.
Let r be a real quadratic form with divisorD + 	D, and letg be a complex quadratic form with divisor 2D (both
divisors taken onQC).

SinceD ∼ 	D, there is a rational functionh on QC with div(h) = 	D − D. Let c = hh̄, a nonzero real consta
onQ. Since div(r) = div(g) + div(h), there is a complex numberα �= 0 with r

g
= αh onQ, which implies that

c|α|2 = r

g
· r̄

ḡ
= r2

p2 + q2

onQ, wherep andq are the real and imaginary parts ofg = p + iq . So the quartic form

u := r2 − c |α|2(p2 + q2)

vanishes identically onQ. Sinceu �= 0, f is a constant multiple ofu. If c > 0, we get a signed quadratic repres
tation off , with both signs± occurring. Ifc < 0, f must be a positive multiple ofu sincef is non-negative, and
we get a representation off as a sum of three squares of real forms.

We now calculate the sign ofc. For this we use the well-known exact sequence

0→ Pic(Q) → Pic(QC)G
∂−→ Br(R) → Br(Q).

It arises from the Hochschild–Serre spectral sequence for étale cohomology with coefficientsGm. Here G =
Gal(C/R) acts on Pic(QC) by conjugation, and Pic(QC)G is the group ofG-invariant divisor classes. Moreove
Br(R) is the Brauer group ofR, which is of order 2, and Br(Q), the Brauer group ofQ, can be identified with the
subgroup of BrR(Q) consisting of all Brauer classes whichare everywhere unramified. The map Br(R) → Br(Q)

is the restriction map.
It is easy to see thatc < 0 if and only if ∂(ζ ) is the non-trivial class in Br(R).
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By a theorem of Witt [11], every non-negative rational function on a smooth projective curve overR is a sum
of two squares of rational functions. SinceQ is smooth andf is non-negative, this forcesQ(R) = ∅. Hence−1 is
a sum of two squares inR(Q). This means(−1,−1) = 0 in Br(Q), and hence the map∂ is surjective.

Since the genus ofQ is odd (equal to 3), a theorem of Weichold [10,3] implies that all classes in Pic(QC)G

have even degree, and the real Lie groupJ (R) has exactly two connected components. Thus the sequence

0→ J (R)0 → J (R)
∂−→ Br(R) → 0

is (split) exact. SinceJ (R)0 ∼= (S1)3 as a real Lie group, there exist 24 − 1 = 15 non-zero 2-torsion classes
J (R). The 8 that do not lie inJ (R)0, or equivalently, which cannot be represented by a conjugation-inva
divisor onQC, are precisely those that give rise to sums of squares representations off . This completes the proo
of Theorem 1.1.

We close with a few remarks about the singular case. Wall [9] studies quadratic representations of (
singular) complex ternary quartic formsf . If f is irreducible, the non-trivial 2-torsion points on the generali
Jacobian of the curveQ = {f = 0} again give equivalence classes of quadratic representations off . These repre
sentations are special in that they have no basepoints.

By classifying all possibilities for quadratic representations for each possible base locus in the case
form f is real and non-negative, one arrives at the number of inequivalent quadratic representations off . This
classification, together with arguments from Galois cohomology, gives all inequivalent representations of as a
sum of squares. Iff is reducible, different methods can be applied to complete the picture. This complete a
will appear in an unabridged version.
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