http://france.elsevier.com/direct/CRASS1/

Probability Theory

Level sets of β-expansions

Aihua Fan ${ }^{\text {a,b }}$, Hao Zhu ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Wuhan University, 430072, Wuhan, China
b LAMFA, UMR 6140 CNRS, université de Picardie, 33, rue Saint Leu, 80039 Amiens, France

Received 5 June 2004; accepted after revision 27 September 2004
Available online 28 October 2004
Presented by Yves Meyer

Abstract

Let $\left\{\epsilon_{n}(x)\right\}_{n \geqslant 1}$ be the sequence of β-digits of a real number $x \in(0,1)$, with the golden number $\beta=(\sqrt{5}+1) / 2$ as basis. For any $0 \leqslant p \leqslant 1 / 2$, any $0<\tau \leqslant 1$ and any real number a, we consider the level set consisting of numbers x such that $\sum_{n=1}^{\infty}\left(\epsilon_{n}(x)-p\right) / n^{\tau}=a$. We prove that the Hausdorff dimension of this set is independent of a and τ, and that it is equal to $\log f(p) / \log \beta$ where $f(p)=(1-p)^{1-p} /\left((1-2 p)^{1-2 p} p^{p}\right)$. To cite this article: A. Fan, H. Zhu, C. R. Acad. Sci. Paris,

 Ser. I 339 (2004).© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Ensembles de niveau des $\boldsymbol{\beta}$-développements. Soit $\left\{\epsilon_{n}(x)\right\}_{n \geqslant 1}$ la suite de β-digits du nombre réel $x \in(0,1)$, avec le nombre d'or $\beta=(\sqrt{5}+1) / 2$ comme base. Pour tout $0 \leqslant p \leqslant 1 / 2,0<\tau \leqslant 1$ et $a \in \mathbb{R}$, nous considérons l'ensemble de niveau qui est constitué des x tels que $\sum_{n=1}^{\infty}\left(\epsilon_{n}(x)-p\right) / n^{\tau}=a$. Nous prouvons que la dimension de Hausdorff de cet ensemble est independante de a et τ, et qu' elle est égale à $\log f(p) / \log \beta$ où $f(p)=(1-p)^{1-p} /\left((1-2 p)^{1-2 p} p^{p}\right)$. Pour citer cet article : A. Fan, H. Zhu, C. R. Acad. Sci. Paris, Ser. I 339 (2004).
© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let $\beta>1$ be a real number. It is well known that any number $x \in[0,1)$ has a β-expansion $x=\sum_{i=1}^{\infty} \varepsilon_{i}(x) / \beta^{i}$ where $\varepsilon_{i}(x)=\left[\beta T^{i-1}(x)\right], T(x)=\beta x(\bmod 1)$ being the β-shift on $[0,1)$ and $[y]$ denoting the integral part of a real number y (see $[8,7]$). We call $\left\{\varepsilon_{n}(x)\right\}_{n \geqslant 1}$ the sequence of β-digits of x. In this note we study the distribution of the β-digits for different numbers x when $\beta=(\sqrt{5}+1) / 2$ is the golden number.

[^0]Let $S_{n}(x)=\sum_{j=1}^{n} \epsilon_{k}(x)$. We introduce the following sets:

$$
\begin{aligned}
& E(p)=\left\{x \in[0,1): S_{n}(x)-n p=o(n)\right\} \quad(p \in[0,1 / 2]) \\
& L(p, \tau, a)=\left\{x \in[0,1): \sum_{k=1}^{\infty} k^{-\tau}\left(\epsilon_{k}(x)-p\right)=a\right\} \quad(p \in[0,1 / 2], 0<\tau \leqslant 1, a \in \mathbb{R})
\end{aligned}
$$

and we consider the Hausdorff dimensions of these sets. It is well known that $\operatorname{dim} E(p)=\log f(p) / \log \beta$ with $f(p)=(1-p)^{1-p} /\left((1-2 p)^{1-2 p} p^{p}\right)$ (see [3], for example). Observe that the level sets $L(p, \tau, a)$ are disjoint subsets of $E(p)$. However, we prove that they have all the same dimension as $E(p)$.

Theorem 1.1. We have $\operatorname{dim} L(p, \tau, a)=\operatorname{dim} E(p)$ for all $0 \leqslant p \leqslant 1 / 2,0<\tau \leqslant 1$ and $-\infty<a<+\infty$.

The result is a kind of refinement of Birkhoff ergodic theorem. Another kind of refinement is considered in [2]. The method for proving the above theorem could be adapted for other Pisot numbers $\beta>1$ than the golden number. For the dyadic expansion (i.e. $\beta=2$), the function $f(p)$ must be replaced by $p^{p}(1-p)^{1-p}$ where $0 \leqslant p \leqslant 1$. Wu [9] and Xi [10] studied the dyadic case with $p=1 / 2$ (the mean value of $\epsilon_{n}(x)$ with respect to the Lebesgue measure) and proved that $\operatorname{dim}_{H} L(1 / 2, \tau, a)=1$. Earlier, Beyer [1] showed the inequality $\operatorname{dim}_{H} L(1 / 2, \tau, a) \geqslant 1 / 2$.

Our study gives a very partial contribution to the following general problem. Given any function ϕ, we consider $S_{n} \phi(x)=\sum_{j=0}^{n-1} \phi\left(T^{j} x\right)$. For any ergodic invariant measure μ, the Birkhoff theorem asserts that $S_{n} \phi(x)-n \int \phi \mathrm{~d} \mu=o(n)$ for μ-almost all x. In [2], we have studied possible refinements by considering points x such that $S_{n} \phi(x)-n \int \phi \mathrm{~d} \mu \asymp n^{\tau}$ with $0<\tau<1$. Another way to refine the Birkhoff theorem is to consider the set of points such that the series $\sum_{n=1}^{\infty} a_{n}\left(\phi\left(T^{j} x\right)-\int \phi \mathrm{d} \mu\right)$ converges, where a_{n} is a decreasing positive sequence. Our above theorem concerns nothing but the occurrence of digits, for ϕ is the characteristic function of the interval $\left[0, \beta^{-1}\right]$. The general case remains unsolved. Another special case is the trigonometric series $\sum_{n=1}^{\infty} a_{n}\left(e^{2 \pi i 2^{n} x}-p\right)$ where p may be complex. It corresponds to $\beta=2, \phi(x)=e^{2 \pi i x}$. When $p=0$ (the mean value of $e^{2 \pi i x}$ with respect to the Lebesgue measure), for any complex number a there exists points x such that $\sum_{n=1}^{\infty} a_{n}\left(e^{2 \pi i 2^{n} x}-p\right)=a$ (see [6]). Little is known about the level sets of this series.

2. Preliminaries

Let $a_{n}=n^{-\tau}$. The sequence $\left\{a_{n}\right\}$ shares the following property, the most useful one to us,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n}=0, \quad \sum_{n=1}^{\infty}\left|a_{n}\right|=+\infty, \quad \sum_{n=1}^{\infty}\left|a_{n}-a_{n+1}\right|<+\infty \tag{1}
\end{equation*}
$$

It is known [7] that for the golden number β, the set of sequences of β-digits coincides with the subshift of finite type Σ_{A} determined by the matrix $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$, with an exception of a countable set which will be taken off, because the transformation $T x=\beta x(\bmod 1)$ is Markovian. Let $\eta:[0,1) \rightarrow \Sigma_{A}$ be the function, which associates x to its β-digits $\left\{\varepsilon_{n}(x)\right\}$, is one-to-one except for a countable set and is strictly increasing when Σ_{A} is endowed with the lexicographical order.

Any finite or infinite sequence of 0 or 1 which does not contain the string 11 is said to be admissible. For any admissible sequence $\left\{\epsilon_{n}\right\}_{1 \leqslant n \leqslant N}$, the β-interval $I\left(\epsilon_{1}, \ldots, \epsilon_{N}\right)$ is defined to be the set of all $x \in[0,1)$ such that $\epsilon_{n}(x)=\epsilon_{n}$ for $1 \leqslant n \leqslant N$. A natural metric on Σ_{A} is defined by $d(\epsilon, \eta)=\beta^{-n}$ where n is the largest integer such that $\epsilon_{i}=\eta_{i}$ for $1 \leqslant i \leqslant n$. The β-interval $I\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ has a length of order β^{-n} (see [4]).

Let $J \geqslant 1$ be a big fixed integer. We define the 'killing map' $\widehat{T}: \Sigma_{A} \rightarrow \Sigma_{A}$ by

$$
\widehat{T}\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right)=\left(\eta_{1}, \eta_{2}, \ldots\right),
$$

where $\eta_{n}=0$ or ϵ_{n} according to n is a multiple of J or not. Notice that \widehat{T} is Lipschitzian. Then consider the map $T:[0,1) \rightarrow[0,1)$ defined by $T=\eta^{-1} \widehat{T} \eta$.

Lemma 2.1. We have $\operatorname{dim}_{H} T E \leqslant \operatorname{dim}_{H} E$ for any set $E \subset[0,1)$.
Proof. It suffices to notice that both η and η^{-1} preserve the Hausdorff dimension and that \widehat{T} is Lipschitzian.
Lemma 2.2 (Kaczmarz-Steinhaus [5]). Suppose that $\left\{a_{n}\right\}$ is sequence of real numbers such that $\lim _{n \rightarrow \infty} a_{n}=0$ and $\sum_{n=1}^{\infty}\left|a_{n}\right|=\infty$ and that $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ be two sequences of real numbers such that $-\Delta \leqslant q_{n} \leqslant-\delta$ and $\delta \leqslant p_{n} \leqslant \Delta$ for some constants $\Delta \geqslant \delta>0$. Then for any real number a, there is a sequence $\left\{R_{n}\right\}$ with $R_{n}=p_{n}$ or q_{n} such that $\sum_{n=1}^{\infty} a_{n} R_{n}=a$.

Proof. We may choose R_{n} inductively. Suppose that R_{1}, \ldots, R_{n} are chosen. We take $R_{n+1}=q_{n+1}$ if $\sum_{j=1}^{n} a_{n} R_{j}>a$; otherwise we take $R_{n+1}=p_{n+1}$.

Lemma 2.3. Let $\left\{\epsilon_{k}\right\}_{k \geqslant 1} \in\{0,1\}^{\mathbb{N}}$ and $\left\{a_{k}\right\}_{k \geqslant 1} \in \mathbb{R}^{\mathbb{N}}$. For any integers $n<m$, denoting $\mu=\frac{1}{m-n} \sum_{j=n+1}^{m} \epsilon_{j}$ (i.e. the frequency of 1) we have

$$
\left|\sum_{k=n+1}^{m} a_{k}\left(\epsilon_{k}-\mu\right)\right| \leqslant \sum_{j=n+1}^{m} \epsilon_{j} \sum_{k=n+1}^{m}\left|a_{k}-a_{k-1}\right| .
$$

Proof. Let $N=\sum_{j=n+1}^{m} \epsilon_{j}$. We may write

$$
\sum_{k=n+1}^{m} a_{k}\left(\epsilon_{k}-\mu\right)=\frac{1}{n-m}\left[\sum_{k: \epsilon_{k}=1}(n-m) a_{k}-\sum_{k=n+1}^{m} N a_{k}\right] .
$$

Both sums at the right-hand side may be considered as sums of a_{i} 's with $N(n-m)$ terms. Notice that for any a_{i} and a_{j} with $n<i<j \leqslant m$ we have

$$
\left|a_{i}-a_{j}\right| \leqslant \sum_{k=i+1}^{j}\left|a_{k}-a_{k-1}\right| \leqslant \sum_{k=n+1}^{m}\left|a_{k}-a_{k-1}\right| .
$$

So, $\left|\sum_{k=n+1}^{m} a_{k}\left(\epsilon_{k}-\mu\right)\right| \leqslant N \sum_{k=n+1}^{m}\left|a_{k}-a_{k-1}\right|$.

3. Proof

We have only to prove $\operatorname{dim} L(p, \tau, a) \geqslant \log f(p) / \log \beta$ for $0<p<1 / 2$. Take an infinite number of couples of integers (J, W) such that $W /(J-1)<p<(W+1) /(J-1)$. For such a fixed couple (J, W), we construct a set $F_{J} \subset[0,1]$ as follows. Let G_{J}^{\prime} be the set of the β-admissible sequences $\left\{\varepsilon_{n}\right\}_{1 \leqslant n \leqslant J}$ of length J such that (i) $\varepsilon_{1}=0, \varepsilon_{J-1}=\varepsilon_{J}=0$; (ii) $\sum_{i=1}^{J-1} \varepsilon_{i}=W$. Let $G_{J}^{\prime \prime}$ be the set of the β-admissible sequences $\left\{\varepsilon_{n}\right\}_{1 \leqslant n \leqslant J}$ of length J such that (iii) $\varepsilon_{1}=0, \varepsilon_{J-1}=\varepsilon_{J}=0$; (iv) $\sum_{i=1}^{J-1} \varepsilon_{i}=W+1$. For any $t \geqslant 1$, let $\Lambda_{t}=[J(t-1)+1$, $J t-1] \cap \mathbb{N}$ and $A_{t}=\sum_{i \in \Lambda_{t}} a_{i}$. We have $\sum_{t=1}^{\infty}\left|A_{t}\right|=\infty$ and $\lim _{t \rightarrow \infty} A_{t}=0$. Notice that $W /(J-1)-p<0$ and $(W+1) /(J-1)-p>0$. By Lemma 2.2, for any $\alpha \in \mathbb{R}$ we can find a sequence $\left\{r_{t}\right\}_{t} \geqslant 1$ with $r_{t}=W /(J-1)-p$ or $(W+1) /(J-1)-p$ such that

$$
\begin{equation*}
\sum_{t=1}^{\infty} A_{t} r_{t}=\alpha \tag{2}
\end{equation*}
$$

Define $G_{t}=G_{J}^{\prime}$ or $G_{J}^{\prime \prime}$ according to $r_{t}=W /(J-1)-p$ or $(W+1) /(J-1)-p$. Then define $G=\prod_{t=1}^{\infty} G_{t}$ and F_{J} to be the set of all $x=\sum_{n=1}^{\infty} \varepsilon_{n} / \beta^{n}$ with $\left\{\epsilon_{n}\right\}_{n \geqslant 1} \in G$. Now for $\left\{\epsilon_{n}\right\}_{n \geqslant 1} \in G$, we are going to show the convergence of the series $\sum_{i \in \mathbb{N} \backslash J \mathbb{N}}^{\infty} a_{i}\left(\varepsilon_{i}-p\right)$. Let $B_{t}=\sum_{i \in \Lambda_{t}} a_{i}\left(\varepsilon_{i}-W /(J-1)\right)$ or $\sum_{i \in \Lambda_{t}} a_{i}\left(\varepsilon_{i}-(W+1) /(J-1)\right)$ according to $r_{t}=W /(J-1)-p$ or $(W+1) /(J-1)-p$. Then we have $\sum_{i \in \Lambda_{t}} a_{i}\left(\varepsilon_{i}-p\right)=B_{t}+A_{t} r_{t}$. By Lemma 2.3, we have $\left|B_{t}\right|<(W+1) \sum_{i \in \Lambda_{t}}\left|a_{i+1}-a_{i}\right|$. It follows that $\sum_{t=1}^{\infty}\left|B_{t}\right|<+\infty$. Thus $\sum_{t=1}^{\infty} B_{t}$ is convergent. We denote its sum by γ. This convergence, together with (2), implies

$$
\begin{equation*}
\sum_{i=1 \in \mathbb{N} \backslash J \mathbb{N}} a_{i}\left(\varepsilon_{i}-p\right)=\sum_{t=1}^{\infty} \sum_{i \in \Lambda_{t}} a_{i}\left(\varepsilon_{i}-p\right)=\gamma+\alpha \tag{3}
\end{equation*}
$$

According to Lemma 2.2, we can find a new sequence $\left\{\varepsilon_{J i}^{\prime}\right\}$ taking in $\{0,1\}$ such that

$$
\begin{equation*}
\sum_{i=1}^{\infty} a_{J i}\left(\varepsilon_{J i}^{\prime}-p\right)=a-(\gamma+\alpha) \tag{4}
\end{equation*}
$$

Let $E_{J}=\eta^{-1} \tilde{T} \eta\left(F_{J}\right)$. By (3) and (4), we get $E_{J} \subseteq L_{a}$ then $F_{J} \subset T L_{a}$.
By Lemma 2.1, we have to estimate $\operatorname{dim} F_{J}$ from below. For $1 \leqslant i_{t} \leqslant \operatorname{Card} G_{t}(1 \leqslant t \leqslant n)$, let $U_{i_{1} i_{2} \cdots i_{n}}=$ $\left[x_{i_{1} i_{2} \cdots i_{n}}, x_{i_{1} i_{2} \cdots i_{n}}+\beta^{-J n}\right]$ where $x_{i_{1} i_{2} \cdots i_{n}}=\sum_{k=1}^{J n} \varepsilon_{k} / \beta^{k}$ with $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{J n}\right) \in \prod_{t=1}^{n} G_{t}$. The interval $U_{i_{1} \cdots i_{n}}$ is nothing but the β-interval $I\left(\epsilon_{1}, \ldots, \epsilon_{J n}\right)$. Since $\varepsilon_{J n-1}=0$, all these intervals $U_{i_{1} i_{2} \cdots i_{n}}$ are disjoint. We have the expression $F_{J}=\bigcap_{n=1}^{\infty} \bigcup_{i_{1} i_{2} \cdots i_{n}} U_{i_{1} i_{2} \cdots i_{n}}$. Define the set function μ by

$$
\mu\left(U_{i_{1} i_{2} \cdots i_{n}}\right)=\frac{1}{\left(\operatorname{Card} G_{J}^{\prime}\right)^{u_{n}}\left(\operatorname{Card} G_{J}^{\prime \prime}\right)^{v_{n}}}
$$

where u_{n} is the number of G_{J}^{\prime} 's in the sequence $\left\{G_{1}, \ldots, G_{n}\right\}$ and $v_{n}=n-u_{n}$. We can extend μ to a Borel probability measure on F_{J}. Write $\mu\left(U_{i_{1} i_{2} \cdots i_{n}}\right)=\left|U_{i_{1} i_{2} \cdots i_{n}}\right|^{s_{n}}$ where $s_{n}=\left(u_{n} \log \operatorname{Card} G_{J}^{\prime}+v_{n} \log \operatorname{Card} G_{J}^{\prime \prime}\right) /(n J \log \beta)$. Without loss of generality, we assume $\operatorname{Card} G_{J}^{\prime} \geqslant \operatorname{Card} G_{J}^{\prime \prime}$. Then

$$
\mu\left(U_{i_{1} i_{2} \cdots i_{n}}\right) \leqslant\left|U_{i_{1} i_{2} \cdots i_{n}}\right|^{\frac{\log \mathrm{Card} G_{J}^{\prime}}{J \log \beta}} .
$$

This inequality remains true for general intervals instead of $U_{i_{1} i_{2} \cdots i_{n}}$ because the lengths of intervals $U_{i_{1} i_{2} \cdots i_{n}}$ (n being fixed) are between $c_{1} \beta^{-J n}$ and $c_{2} \beta^{-J n}$ for some constants $0<c_{1} \leqslant c_{2}$. Then by the Frostman lemma, we get $\operatorname{dim}_{H} F_{J} \geqslant\left(\log \operatorname{Card} G_{J}^{\prime}\right) /(J \log \beta)$. Notice that $\operatorname{Card} G_{J}^{\prime}=\left({ }_{W}^{J-3-W}\right)$ is a combinatorial number; it is easy to compute $\lim _{J}\left(\log \operatorname{Card} G_{J}^{\prime}\right) / J=\log f(p)$. Since $L_{a} \supset E_{J}$, we have proved the theorem.

References

[1] W.A. Beyer, Hausdorff dimension of level set of some Rademacher series, Pacific J. Math. 12 (1962) 35-46.
[2] A.H. Fan, J. Schmeling, On fast Birkhoff averaging, Math. Proc. Cambridge Philos. Soc. 135 (3) (2003) 443-467.
[3] A.H. Fan, D.J. Feng, J. Wu, Recurrence, dimension and entropy, J. London Math. Soc. 64 (2001) 229-244.
[4] A.M. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc. 102 (1962) 409-432.
[5] S. Kaczmarz, H. Steinhaus, Le système orthogonal de M. Rademacher, Studia Math. 2 (1930) 231-247.
[6] J.P. Kahane, Lacunary Taylor series and Fourier series, Bull. Amer. Math. Soc. 70 (1964) 199-213.
[7] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416.
[8] A. Rényi, Representation for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493.
[9] J. Wu, Dimension of level sets of some Rademacher series, C. R. Acad. Sci. Paris, Ser. I 327 (1998) 29-33.
[10] L.F. Xi, Hausdorff dimension of level sets of Rademacher series, C. R. Acad. Sci. Paris, Ser. I 331 (2000) 953-958.

[^0]: E-mail addresses: ai-hua.fan@u-picardie.fr (A. Fan), rendong77@yahoo.com.cn (H. Zhu).
 1631-073X/\$ - see front matter © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
 doi:10.1016/j.crma.2004.09.026

