

Available online at www.sciencedirect.com

http://france.elsevier.com/direct/CRASS1/

Mathematical Analysis/Harmonic Analysis

Pointwise regularity criteria

Stéphane Jaffard a,b

^a Laboratoire d'analyse et de mathématiques appliquées, université Paris XII, 61, avenue du Général de Gaulle, 94010 Créteil cedex, France ^b Institut universitaire de France, 103, boulevard Saint-Michel 75005 Paris, France

Received 30 September 2004; accepted 5 October 2004

Presented by Yves Meyer

Abstract

A wavelet characterization of the pointwise regularity condition $T_u^p(x_0)$ of Calderón and Zygmund is obtained. The extremal case (a pointwise BMO condition) yields the sharpest wavelet condition which is implied by pointwise Hölder regularity; in particular, this criterium is sharper than the usual two-microlocal condition. *To cite this article: S. Jaffard, C. R. Acad. Sci. Paris, Ser. I 339 (2004).*

© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Critères de régularité ponctuelle. On obtient une caractérisation par ondelettes de la condition de régularité ponctuelle $T_u^p(x_0)$ de Calderón et Zygmund. Le cas extrème (une condition de type BMO local) fournit la condition la plus précise sur les modules des coefficients d'ondelette impliquée par la régularité Hölderienne ponctuelle ; en particulier elle est plus fine que le critère deux-microlocal usuel. *Pour citer cet article : S. Jaffard, C. R. Acad. Sci. Paris, Ser. I 339 (2004).* © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Il existe plusieurs définitions possibles de la régularité ponctuelle d'une fonction $f : \mathbb{R}^d \to \mathbb{R}$; la plus couramment utilisée est la *régularité Hölderienne*.

Définition 0.1. Soient $f \in L_{loc}^{\infty}$, $x_0 \in \mathbb{R}^d$ et $\alpha \ge 0$; alors $f \in C^{\alpha}(x_0)$ s'il existe R > 0, C > 0, et un polynôme P de degré inférieur à α tels que

si
$$|x - x_0| \leq R$$
 alors $|f(x) - P(x - x_0)| \leq C|x - x_0|^{\alpha}$. (1)

E-mail address: jaffard@univ-paris12.fr (S. Jaffard).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2004.10.011

La condition L_{loc}^{∞} est nécessaire ; en effet (1) implique que f est bornée au voisinage de x_0 . Donc cette définition n'est pas utilisable si le cadre naturel pour f est L_{loc}^p pour un $p < \infty$. Un autre inconvénient a été découvert par Calderón et Zygmund en 1961, cf. [2] : la condition (1) n'est pas conservée sous l'action des opérateurs pseudodifférentiels classiques d'ordre 0. De plus, les ondelettes ne sont pas des bases inconditionelles de l'espace $C^{\alpha}(x_0)$, cf. [3]. Aussi Calderón et Zygmund ont introduit les conditions de régularité ponctuelle $T_u^p(x_0)$ qui ne souffrent pas de ces inconvénients. Soit $p \in (1, \infty)$, $f \in L_{loc}^p$ et $u \ge -d/p$; on dit que $f \in T_u^p(x_0)$ s'il existe R, C > 0 et un polynôme P de degré inférieur à u tels que

$$\forall r \leq R, \quad \left(\frac{1}{r^d} \int\limits_{B(x_0,r)} \left| f(x) - P(x-x_0) \right|^p \mathrm{d}x \right)^{1/p} \leq Cr^u.$$

En tenant compte du fait que les extensions « naturelles » (du point de vue de l'analyse harmonique) des espaces L^p pour $p = \infty$ et $p \leq 1$ sont, respectivement, l'espace BMO et les espaces de Hardy réels H^p , on peut étendre les conditions $T_u^p(x_0)$ à ces valeurs de p.

Définition 0.2. Soit $p \in (0, 1]$, $f \in H_{loc}^p$ et $u \ge -d/p$; $f \in T_u^p(x_0)$ s'il existe R, C > 0 et un polynôme P de degré inférieur à u tels que $\|(f - P)\mathbf{1}_{B(x_0,r)}\|_p \le Cr^{u+d/p}$.

Soit $f \in BMO_{loc}$; $f \in T_u^{\infty}(x_0)$ s'il existe R, C > 0 et un polynôme P de degré inférieur à u tels que $\|(f-P)1_{B(x_0,r)}\|_{BMO} \leq Cr^u$.

Notre but est d'obtenir une caractérisation de ces conditions pour tout $p \in (0, +\infty]$ par un critère portant sur les modules des coefficients d'ondelette de f.

Soient $\psi^{(i)}$, $i = 1, ..., 2^d - 1$, des fonctions C^A à support compact (où A est choisi suffisamment grand) et engendrant une base d'ondelettes, c'est-à-dire que les $2^{dj/2}\psi^{(i)}(2^jx - k)$ ($i = 1, ..., 2^d - 1, j \in \mathbb{Z}, k \in \mathbb{Z}^d$) forment une base orthonormée de $L^2(\mathbb{R}^d)$. On utilise l'indexation des ondelettes par les cubes dyadiques (rappelée dans le texte anglais). On notera $c_\lambda = 2^{dj} \int \psi^{(i)}(2^jx - k) f(x) dx$. Si $x_0 \in \mathbb{R}^d$, on notera $\lambda_j(x_0)$ le cube dyadique de largeur 2^{-j} contenant x_0 , et $S_f(j, x_0)(x) = (\sum_{\lambda \subset 3\lambda_j(x_0)} |c_\lambda|^2 \mathbf{1}_{\lambda}(x))^{1/2}$.

Théorème 0.3. Soit $p \in (0, \infty)$ and u > -d/p; si $f \in T_u^p(x_0)$, alors $\exists C \ge 0$ tel que $\forall j \ge 0$,

$$\|S_f(j, x_0)\|_p \leqslant C 2^{-j(u+d/p)}.$$
(2)

Si $p = +\infty$, cette condition devient

$$\forall \lambda \subset 3\lambda_j(x_0), \quad \left(\sum_{\lambda' \subset \lambda} 2^{-dj'} |c_{\lambda'}|^2\right)^{1/2} \leqslant C 2^{-dl/2} 2^{-uj},\tag{3}$$

où la largeur de λ est notée 2^{-l} et la largeur de λ' est notée $2^{-j'}$.

Réciproquement, si (2) *est vérifiée* (*ou si* (3) *est vérifiée dans le cas* $p = +\infty$), *et si* $u \notin \mathbb{N}$, *alors* $f \in T_u^p(x_0)$.

On remarquera que, si p = 2, cette caractérisation se simplifie en

$$\sum_{\lambda'\subset 3\lambda_j(x_0)} 2^{-d(j'-j)} |c_{\lambda'}|^2 \leqslant C 2^{-2uj},$$

qui avait été obtenue antérieurement par Yves Meyer (communication personelle).

1. Introduction

Several definitions for the pointwise regularity of a function $f: \mathbb{R}^d \to \mathbb{R}$ can be introduced depending on the global assumptions that are made on f. The most widely used is the *Hölder criterium*.

Definition 1.1. Let $f \in L^{\infty}_{loc}$, $x_0 \in \mathbb{R}^d$ and $\alpha \ge 0$; then $f \in C^{\alpha}(x_0)$ if $\exists R > 0, C > 0$, and a polynomial *P* of degree less that α such that

if
$$|x - x_0| \leq R$$
 then $|f(x) - P(x - x_0)| \leq C|x - x_0|^{\alpha}$. (4)

The global setting supplied by L_{loc}^{∞} is implicitly required by (4); indeed, (4) implies that f is bounded in a neighbourhood of x_0 . Thus Definition 1.1 cannot supply a sensible notion of pointwise regularity if the natural setting for f is L_{loc}^p for $p < \infty$. Another drawback is less obvious and was already pointed out by Calderón and Zygmund in 1961, see [2]: The pointwise Hölder condition is not preserved under classical pseudodifferential operators of order 0. This instability property has a counterpart in wavelet analysis: Wavelet bases are not unconditional bases of the space $C^{\alpha}(x_0)$; even more is true: There exist two functions f and g which share the same moduli of wavelet coefficients, and nonetheless satisfy $f \in C^{\alpha}(x_0)$ whereas $\forall \beta > 0, g \notin C^{\beta}(x_0)$. Thus Definition 1.1 is unsuitable in several settings; Calderón and Zygmund introduced the following extension which makes sense in the L^p setting and is preserved under singular integral operators.

Definition 1.2. Let $p \in (1, \infty)$, $f \in L^p_{loc}$ and $u \ge -d/p$; then $f \in T^p_u(x_0)$ if $\exists R, C > 0$ and a polynomial P of degree less than u such that

$$\forall r \leqslant R, \quad \left(\frac{1}{r^d} \int\limits_{B(x_0,r)} |f(x) - P(x - x_0)|^p \,\mathrm{d}x\right)^{1/p} \leqslant Cr^u.$$
(5)

Note that this condition can be rewritten $||(f - P)1_{B(x_0,r)}||_p \leq Cr^{u+d/p}$. If one keeps in mind the requirement of using a criterium which is invariant under pseudodifferential operators of order 0, the following definition is the natural extension of $T^p_{\mu}(x_0)$ outside the range $p \in (1, \infty)$. (Recall that, if $p \leq 1$, then H^p denotes the real Hardy space, see [6].)

Definition 1.3. Let $p \in (0, 1]$, $f \in H_{loc}^p$ and $u \ge -d/p$; then $f \in T_u^p(x_0)$ if $\exists R, C > 0$ and a polynomial P of degree less that u such that $\|(f - P)\mathbf{1}_{B(x_0,r)}\|_p \leq Cr^{u+d/p}$. Let $f \in BMO_{\text{loc}}$; then $f \in T_u^{\infty}(x_0)$ if $\exists R, C > 0$ and a polynomial P of degree less that u such that

 $\|(f-P)\mathbf{1}_{B(x_0,r)}\|_{BMO} \leq Cr^u.$

Let $p \in (0, +\infty]$; then the *p*-exponent of f at x_0 is $h_f^p(x_0) = \sup\{u: f \in T_u^p(x_0)\}$.

The motivations for considering this new types of pointwise conditions are of a different nature for $p = \infty$ and for $p \leq 1$. If $p = +\infty$, then the $T_u^{\infty}(x_0)$ condition is the sharpest condition which is implied by $C^u(x_0)$ and can be characterized by a condition bearing on the moduli of the wavelet coefficients of f; it is therefore stronger than the two-microlocal conditions $f \in C^{u,-u}(x_0)$ of [3]. In particular, while the two-microlocal condition can be satisfied by distributions which do not coincide with a function in a neighbourhood of x_0 , the $T_u^{\infty}(x_0)$ wavelet characterization implies that (5) holds for any $p < \infty$. Another motivation is supplied by the analysis of domains with fractal boundaries; one way to understand the geometry of a domain is to use analytic tools on its characteristic function and, in particular, perform its multifractal analysis. This cannot be done using the Hölder exponent as a measure for pointwise regularity since the Hölder exponent of a characteristic function only takes the two values 0 and $+\infty$; thus no characteristic function is multifractal in this sense. By contrast, the *p*-exponent can take any non-negative value, thus opening the way to a multifractal analysis of domains, see [5].

If p < 1, the condition $f \in H_{loc}^p$, allows one to deal with singularities such as $|x - x_0|^{-a}$ near x_0 for a < d/p; therefore using arbitrarily small values of p allows one to deal with singularities of arbitrarily large exponent a, which is needed in some applications, see [1].

Clearly, $C^u(x_0) \hookrightarrow T^\infty_u(x_0)$ and, if $+\infty \ge p \ge q > 0$, then $T^p_u(x_0) \hookrightarrow T^q_u(x_0)$. Using the classical interpolation results between L^p and/or H^p spaces, it follows that, if $f \in T^p_u(x_0) \cap T^q_v(x_0)$, and if r is such that $\frac{1}{r} = \frac{\alpha}{r} + \frac{1-\alpha}{q}$ with $0 < \alpha < 1$, then $f \in T^w_r(x_0)$ with $w = \alpha u + (1-\alpha)v$. Thus, for x_0 given, the function $q \to h_f^{1/q}(x_0)$ is defined on an interval of the form $[q_0, +\infty)$ or $(q_0, +\infty)$, where it is concave and increasing.

2. Wavelet characterization

Let $\psi^{(i)}$, $i = 1, ..., 2^d - 1$, be compactly supported C^A functions (where *A* is large enough) generating a wavelet basis, i.e. the $2^{dj/2}\psi^{(i)}(2^jx-k)$ $(i = 1, ..., 2^d - 1, j \in \mathbb{Z}, k \in \mathbb{Z}^d)$ form an orthonormal basis of $L^2(\mathbb{R}^d)$. Wavelets will be indexed by dyadic cubes as follows: We can consider that *i* takes values among all dyadic subcubes λ_i of $[0, 1)^d$ of width 1/2 except for $[0, 1/2)^d$; thus, the set of indices (i, j, k) can be relabelled using dyadic cubes: λ denotes the cube $\{x: 2^jx - k \in \lambda_i\}$; we note $\psi_{\lambda}(x) = \psi^{(i)}(2^jx - k)$ (an L^{∞} normalization is used), and $c_{\lambda} = 2^{dj} \int \psi_{\lambda}(x) f(x) dx$; $\exists C$: supp $(\psi_{\lambda}) \subset C\lambda$ where $C\lambda$ denotes the cube of same center as λ and C times wider. If $x_0 \in \mathbb{R}^d$, then $\lambda_j(x_0)$ denotes the unique dyadic cube of width 2^{-j} which contains x_0 , and the *local square function* is $S_f(j, x_0)(x) = (\sum_{\lambda \subset 3\lambda_i(x_0)} |c_{\lambda}|^2 \mathbf{1}_{\lambda}(x))^{1/2}$.

Theorem 2.1. Let
$$p \in (0, \infty)$$
 and $u > -d/p$; if $f \in T_u^p(x_0)$, then $\exists C \ge 0$ such that $\forall j \ge 0$,
 $\|S_f(j, x_0)\|_p \le C2^{-j(u+d/p)}$. (6)

If $p = +\infty$, this condition becomes

$$\forall \lambda \subset 3\lambda_j(x_0), \quad \left(\sum_{\lambda' \subset \lambda} 2^{-dj'} |c_{\lambda'}|^2\right)^{1/2} \leqslant C 2^{-dl/2} 2^{-uj},\tag{7}$$

where 2^{-l} is the width of λ and $2^{-j'}$ is the width of λ' . Conversely, if (6) holds (or if (7) holds in the case $p = +\infty$) and if $u \notin \mathbb{N}$, then $f \in T_u^p(x_0)$.

Proof of Theorem 2.1. Assume first that $p < \infty$; then (see [6]) $f \in L^p(\mathbb{R}^d)$ if p > 1, or $f \in H^p(\mathbb{R}^d)$ if $p \leq 1$ if and only if $(\sum_{\lambda} |c_{\lambda}|^2 \mathbf{1}_{\lambda}(x))^{1/2} \in L^p$. The direct part of the theorem follows by applying this characterization to $g(x) = (f(x) - P(x - x_0))\mathbf{1}_{B(x_0, D2^{-j})}(x)$ and noticing that, if D is large enough and $\lambda \subset 3\lambda_j(x_0)$, then the corresponding wavelet coefficients of f and g coincide. If $p = +\infty$, the argument is the same using the characterization of BMO, see [6]: $\exists C, \forall \lambda, \sum_{\lambda' \subset \lambda} 2^{-dj'} |c_{\lambda'}|^2 \leq C \text{Meas}(\lambda)$. Let us now prove the converse part. We can forget the 'low frequency component' of f corresponding to j < 0

Let us now prove the converse part. We can forget the 'low frequency component' of f corresponding to j < 0in its wavelet decomposition, since its contribution belongs locally to $C^A(\mathbb{R}^d)$. Let Λ_j denote the set of dyadic cubes of width 2^{-j} , $\Delta_j f = \sum_{\lambda \in \Lambda_j} c_\lambda \psi_\lambda$, and let $P_j(x - x_0)$ denote the Taylor polynomial of $\Delta_j f$ of degree [u]at x_0 ; (6) or (7) imply that,

if dist
$$(\lambda, x_0) \leq D2^{-j}$$
, then $|c_{\lambda}| \leq C2^{-uj}$. (8)

Let $\rho > 0$ be fixed and let *J* be defined by $2^{-J} \leq \rho < 2 \cdot 2^{-J}$ and *L* be a constant which will be fixed later, but depends only on the size of the support of the wavelets. If $j \leq J + L$, then at most *C* of the ψ_{λ} have a support intersecting $B = B(x_0, \rho)$ and each of them satisfies (8). It follows from Taylor's formula that, if $x \in B$ and $j \leq J + L$, then $|\Delta_j f(x) - P_j(x - x_0)| \leq C \rho^{[u]+1} 2^{j([u]+1-u)}$, and therefore

$$\sum_{j=0}^{J+L} \left| \Delta_j f(x) - P_j(x - x_0) \right| \leqslant C \rho^u.$$
(9)

760

It follows also from (8) that, if $|k| \leq [u] + 1$, then, $\forall j \geq 0$, $|\Delta_j^{(k)} f(x_0)| \leq 2^{(|kl-u)j}$; therefore the series $P(x - x_0) = \sum_{i=0}^{\infty} P_j(x - x_0) = \sum_{i=0}^{\infty} \sum_{|k| < u} \frac{\Delta_j f^{(k)}(x_0)}{k!} (x - x_0)^k$ converges and, if $|x - x_0| \leq \rho$, then

$$\sum_{j=J+L}^{\infty} \left| P_j(x-x_0) \right| \leqslant C \sum_{j=J+L}^{\infty} \sum_{|k| < u} 2^{(|k|-u)j} \rho^k \leqslant C \rho^u.$$
(10)

Let now $g_J(x) = \sum_{j=J+L}^{\infty} \Delta_j f(x)$; then $\|g_J \mathbf{1}_B\|_p \leq \|\sum_{j=J+L}^{\infty} \sum_{\lambda \subset B(x_0, 2\rho)} c_\lambda \psi_\lambda\|_p$ where *L* has been picked large enough so that both functions coincide on *B*. Using the wavelet characterization of L^p , the right hand side is bounded by

$$C \left\| \left(\sum_{j=J+L}^{\infty} \sum_{\lambda \subset B(x_0, 2\rho)} |c_{\lambda}|^2 \mathbf{1}_{\lambda} \right)^{1/2} \right\|_{p} \leq S_{f}(j-L, x_0) \leq C 2^{-j(u+d/p)}.$$
(11)

The required estimate for $||(f - P(x - x_0))\mathbf{1}_{B(x_0,\rho)}||_p$ follows immediately from (9), (10) and (11).

The case $p = \infty$ is completely similar.

3. Remarks and implications in multifractal analysis

If p = 2, this characterization boils down to a local l^2 condition on the wavelet coefficients

$$\sum_{\lambda' \subset 3\lambda_j(x_0)} 2^{-d(j'-j)} |c_{\lambda'}|^2 \leqslant C 2^{-2uj}$$
(12)

which was previously obtained by Yves Meyer (personal communication) using an alternative proof.

If $p = +\infty$, and if $1 \le p < +\infty$, then Theorem 2.1 improves previous results of, respectively, [3] and [5]; up to now, the converse part required a uniform regularity assumption $f \in B_p^{\epsilon,p}$ for and $\epsilon > 0$, which turns out to be unnecessary. Note also that, if f satisfies (7), then $f \in T_u^p(x_0)$ for any $p < \infty$. This is in sharp contrast with the two-microlocal condition obtained in [3] as a consequence of $C^u(x_0)$ regularity which does not imply any $T_u^p(x_0)$ regularity result (or even that f locally coincides with a function).

If $p \neq 2$, then (6) in not a local l^p condition on the wavelet coefficients; however, the embeddings between Sobolev and Besov spaces supply the following conditions which are easier to use in practice:

If $p \ge 2$, then $L^p \hookrightarrow B_p^{0,p}$; thus if $f \in T_u^p(x_0)$ for $p \ge 2$, then $\sum_{\lambda' \subset 3\lambda_j(x_0)} 2^{-d(j'-j)} |c_{\lambda'}|^p \le C2^{-puj}$. Similarly, if $p \le 2$, then $B_p^{0,p} \hookrightarrow L^p$; thus if $\sum_{\lambda' \subset 3\lambda_j(x_0)} 2^{-d(j'-j)} |c_{\lambda'}|^p \le C2^{-puj}$, then $f \in T_u^p(x_0)$.

The two-microlocal condition $C^{\alpha,-\alpha}(x_0)$ is 'far' from the Hölder condition $C^{\alpha}(x_0)$ in the sense that it can be satisfied by distributions which are not functions. However, it is 'close' if a uniform regularity condition holds; indeed, let $\alpha > \epsilon > 0$; if $f \in C^{\alpha,-\alpha}(x_0) \cap C^{\epsilon}(\mathbb{R}^d)$, then $\forall \beta < \alpha, f \in C^{\beta}(x_0)$, see [3]. The following result shows that T_u^p regularity is 'farther' from Hölder regularity under this respect.

Proposition 3.1. Let $f \in T^p_{\alpha}(x_0) \cap C^{\epsilon}(\mathbb{R}^d)$, with $\alpha > \epsilon + (d/p)$ and let $\beta = \alpha \epsilon p/(\epsilon p + d)$; then $f \in C^{\beta}(x_0)$ and this result is optimal.

The proof is similar to the proof of the converse part in Theorem 2.1; the only difference lies in the estimate of $\sup |\Delta_j f|$ on $B = B(x_0, 2^{-J})$ for $j \ge J$. The uniform regularity assumption implies that $\sup(|\Delta_j f| \le C2^{-\epsilon j})$; the $T_{\alpha}^{p}(x_0)$ assumption implies that $||\Delta_j f||_{L^{p}(B)} \le C2^{-\alpha J}$, which, using Bernstein's inequalities, implies that $\sup |\Delta_j f| \le C2^{-\alpha J}2^{dj/p}$. The conclusion follows by picking the best of these two estimates according to the value of j.

761

The purpose of the multifractal analysis of a function f is to determine the Hausdorff dimensions of the sets of points where f has a given pointwise regularity. Up to now, this was performed mainly in the context of Hölder pointwise regularity. We now give a result for T_u^p regularity. In that case one wishes to determine the *p*-spectrum $D_p^f(H) = \dim(\{x: h_f^p(x) = H\})$ (where dim denotes the Hausdorff dimension). Upper bounds on the *p*-spectrum can be derived in terms of the following quantities. Let

$$S_f^{\lambda}(p) = \left(\int\limits_{\lambda} \left(\sum_{\lambda' \subset \lambda} |c_{\lambda'}|^2 \mathbf{1}_{\lambda'}(x) \right)^{p/2} \mathrm{d}x \right)^{1/p},$$
$$\eta_f^p(q) = \lim_{R \to +\infty} \liminf_{j \to +\infty} \frac{\log(2^{d(q/p-1)j} \sum_{\lambda \in A_j \cap B(0,R)} (S_f^{\lambda}(p))^q)}{\log(2^{-j})}$$

Theorem 3.2. Let $f \in L^p_{\text{loc}}$; then $D^f_p(H) \leq \inf_{q \neq 0} (d - \eta^p_f(q) + Hq)$.

Sketch of proof. It follows from Theorem 2.1 that

$$h_f^p(x_0) = -\frac{d}{p} + \liminf_{j \to +\infty} \left(\frac{-1}{j} \log_2 \left(\sup_{\lambda' \in \mathrm{adj}(\lambda)} S_f^{\lambda'}(p) \right) \right)$$
(13)

where $adj(\lambda)$ denotes the 3^d dyadic cubes of same width as λ and such that $\overline{\lambda} \cap \overline{\lambda'} \neq \emptyset$. The proof of Theorem 3.2 is exactly the same as the upper bound for the Hölder spectrum, see [4], since the only property used in the derivation of this upper bound is a formula similar to (13). Note that, in Theorem 3.2, no global regularity assumption is needed since, in [4], this assumption is needed only to insure the validity of the formula corresponding to (13), but not in the proof of the upper bound.

Acknowledgements

The author wishes to thank Clotilde Melot and Yves Meyer for several enlightening discussions on the topics of this Note.

References

- A. Arneodo, B. Audit, N. Decoster, J.-F. Muzy, C. Vaillant, Wavelet-based multifractal formalism: applications to DNA sequences, satellite images of the cloud structure and stock market data, in: A. Bunde, J. Kropp, H.J. Schellnhuber (Eds.), The Science of Disasters, Springer, 2002, pp. 27–102.
- [2] A.P. Calderon, A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961) 171–227.
- [3] S. Jaffard, Pointwise smoothness, two-microlocalization and wavelet coefficients, Publ. Mat. 35 (1991) 155-168.
- [4] S. Jaffard, Wavelet techniques in multifractal analysis, in: M. Lapidus, M. van Frankenhuysen, Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, Proc. Sympos. Pure Math., American Mathematical Society, 2004, in press.
- [5] S. Jaffard, C. Melot, Wavelet analysis of fractal boundaries, Preprint, 2004.
- [6] Y. Meyer, Ondelettes et opérateurs, Hermann, 1990.

762