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Abstract

Let G be a graph with a nonempty edge set, we denote the rank of the adjacency matrix ofG and the term rank ofG,
by rk(G) and Rk(G), respectively. It was conjectured [C. van Nuffelen, Amer. Math. Monthly 83 (1976) 265–266], fo
graphG, χ(G) � rk(G). The first counterexample to this conjecture was obtained by Alon and Seymour [J. Graph
13 (1989) 523–525]. Recently, Fishkind and Kotlov [Discrete Math. 250 (2002) 253–257] have proved that for any gG,
χ(G) � Rk(G). In this Note we improve Fishkind–Kotlov upper bound and show thatχ(G) � rk(G)+Rk(G)
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Résumé

Rang, rang maximal et nombre chromatique d’un graphe. SoitG un graphe avec un ensemble d’arête non vide. On
rk(G) le rang (réel) d’une matrice d’adjacenceA deG et Rk(G) le rang maximal d’une matrice ayant même support queA.
Il a été conjecturé [C. van Nuffelen, Amer. Math. Monthly 83 (1976) 265–266] que pour tout grapheG, χ(G) � rk(G). Le
premier contre-exemple à cette conjecture a été obtenu par Alon et Seymour [J. Graph Theor. 13 (1989) 523–525]. Ré
Fishkind et Kotlov [Discrete Math. 250 (2002) 253–257] ont montré que pour tout grapheG, χ(G) � Rk(G). Dans cette Note
nous améliorons cette borne et montronsχ(G) � rk(G)+Rk(G)

2 . Pour citer cet article : S. Akbari, H.-R. Fanaï, C. R. Acad. Sci.
Paris, Ser. I 340 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Determining a good upper bound for the (vertex) chromatic number of a graph is a very important p
in graph theory and has been studied extensively over the years. In 1976 van Nuffelen conjectured [4]
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chromatic number of any graph with at least one edge does not exceed the rank of its adjacency matrix. The fi
counterexample to this conjecture was obtained by Alon and Seymour [1]. They constructed a graph with ch
number 32 and with an adjacency matrix of rank 29. It was proved by Kotlov and Lovász, [2], that the num
vertices in a twin free graph (a graph with no two vertices with the same set of neighbors) is O((

√
2)r), wherer

is the rank of adjacency matrix. In [3] it is shown that for any graphG with a nonempty edge set the chroma
number ofG is, at most, the term rank ofG, and one has equality if and only if (besides isolated vertices)G is
the complete graphKn or the starK1,n−1. In the present Note we improve this upper bound and show tha
chromatic number of a graph does not exceed the average of rank and term rank. Equality holds if and
(besides isolated vertices)G is the complete graphKn or the starK1,n−1.

Before proving our results let us introduce some necessary notation. A subsetX of the vertices ofG is called a
clique if the induced subgraph onX is a complete graph. We denote the size of the maximum clique ofG by ω(G).
A subsetS of V (G) is called anindependent set of G if no vertices ofS are adjacent inG. For a graphG, the
maximal numberα(G) of independent vertices is called theindependence number of G.

A k-vertex colouring of a graphG is an assignment ofk colours{1, . . . , k} to the vertices ofG such that no
two adjacent vertices have the same colour. Thevertex chromatic number χ(G) of a graphG is the smallestk for
whichG has ak-vertex colouring. For any graphG of ordern, theadjacency matrix of G is then×n matrixA(G)

whose(i, j)th entry is 1 ifvi �= vj are adjacent and 0 otherwise. Therank of G, denoted rk(G), is the rank of the
adjacency matrix ofG overR. Theterm rank of G, denoted Rk(G), is the maximal rank of realn × n matrix with
support (non-zero entries) included in the support ofA(G). A two-factor in G is a collection of vertex-disjoin
cycles covering every vertex ofG; here a single edge is considered a two-cycle. For a proof of the following r
see, for instance, [5].

Lemma 1.1. For any graph G with a nonempty edge set, Rk(G) is the maximum number of vertices in a subgraph
H of G such that H has a two-factor.

2. Results

The following theorem is a generalization of Corollary 1 of [3].

Theorem 2.1. For any graph G with a nonempty edge set, χ(G) � Rk(G)+ω(G)
2 . Moreover, equality holds if and

only if (besides isolated vertices) G is the complete graph Kn or the star K1,n−1.

Proof. Clearly we may assume thatG is a graph with no isolated vertex. LetH be a maximal subgraph ofG
which has a two-factor. IfH is a complete graph, thenχ(G) = χ(H) = Rk(G). Clearlyω(G) = |V (H)| = Rk(G)

and the inequality holds. Thus suppose thatH is not a complete graph. Assume thatX1 is an independent subs
of V (H) realizing the independence numberα(H) = |X1| of H . If H \ X1 is a complete graph, then we s
ω1 = |V (H \ X1)|, otherwise assume thatX2 is an independent subset ofV (H \ X1) with maximal size. If we
continue this procedure, we obtainV (H) = (

⋃k
i=1 Xi) ∪ V (L), where|Xi | � 2 andL is a complete graph o

sizeω1 (we note thatL may be the empty graph). Now we colour each vertex inXi with colouri, for i, 1� i � k,
and we colour all vertices ofL with ω1 new colours. We have

χ(H) � Rk(G) − ω1

2
+ ω1 � Rk(G) + ω(G)

2
.

Now if χ(G) = χ(H), we are done. Thus assume thatχ(G) > χ(H). SinceV (G\H) is independent, there exis
a vertexx ∈ V (G \ H) such that its degree inG is at leastχ(H). Consider a two-factor ofH as cycles or single
edges. SinceH is a maximal subgraph ofG which has a two-factor, it is easy to verify thatx cannot be adjacen
to a vertex of an odd cycle of the two-factor ofH . On the other hand, every even cycle has a two-factor which
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matching, sox is adjacent to at most half of the vertices of an even cycle of the two-factor ofH , becauseH is a
maximal subgraph ofG which has a two-factor. This means that the degree ofx in G is at mostRk(G)

2 . Combining

these inequalities we obtainχ(H) � Rk(G)
2 . Henceχ(G) � Rk(G)

2 + 1� Rk(G)+ω(G)
2 and the inequality is proved

Now we show that if equality holds, thenG is the complete graphKn or the starK1,n−1. We consider the
following two cases:

Case 1.χ(G) = χ(H). As we saw before, we have

Rk(G) + ω(G)

2
= χ(G) = χ(H) � Rk(G) − ω1

2
+ ω1 � Rk(G) + ω(G)

2
.

This implies thatω1 = ω(G) � 2 and|Xi | = 2, for anyi. Soα(H) � 2. If H is a complete graph, then eith
G = H = L is a complete graph orG �= H . In the later case, sinceH is a maximal subgraph ofG which has a
two-factor andH is complete, we haveH = K2 andG must be a star. Thus suppose thatH is not a complete graph
Hence we have Rk(G) = 2k + ω(G), wherek � 1 denotes the number ofXi ’s defined in the proof of the mai
inequality. Henceχ(G) = k + ω(G). Now if we colour the vertices ofXi , by the colouri, for i, 1 � i � k − 1,
and we colour all vertices of the complete graphL by ω(G) new colours, then we can colour two vertices ofXk

with colours already used in the vertex colouring ofL. This shows thatχ(H) � k − 1 + ω(G) which contradicts
χ(H) = χ(G) = k + ω(G).

Case 2.χ(G) �= χ(H). As we saw before, in this case we have

Rk(G) + ω(G)

2
= χ(G) � Rk(G)

2
+ 1.

Henceω(G) = 2, χ(H) = Rk(G)
2 and|V (H)| = Rk(G) is an even number.

If |X1| � 4, using the fact thatω1 � 2, we can colourV (X1 ∪ L), with at most two colours. Therefore by th
same argument used in the proof of the main inequality, we haveχ(H) � Rk(G)−5

2 + 2, a contradiction. It follows

that α(H) � 3. On the other hand, sinceχ(G) > χ(H) = Rk(G)
2 , there is a vertexx ∈ V (G \ H) such thatx is

adjacent to at leastRk(G)
2 vertices ofH . Sinceω(G) = 2, theseRk(G)

2 vertices ofH are independent and notin
thatα(H) � 3, we conclude that|V (H)| = Rk(G) � 6. Now if H is not a bipartite graph,|V (H)| = 6 andH has
a cycleC with length 5. Ify ∈ V (H \ C), by maximality ofH , one can see thatx is not adjacent toy. Thusx is
adjacent to at least three vertices ofC. This implies thatω(G) > 2, a contradiction. ThusH is a bipartite graph
and 2= χ(H) = Rk(G)

2 . HenceG has no odd cycle and so it is a bipartite graph. Thusχ(G) = 2 which contradicts
χ(G) > χ(H) = 2. �

We note that the following result of Fishkind and Kotlov [3, Corollary 1] is an immediate consequen
Theorem 2.1.

Corollary 2.2. For any graph G with a nonempty edge set, χ(G) � Rk(G). Moreover, equality holds if and only if
(besides isolated vertices) G is the complete graph Kn or the star K1,n−1.

Proof. Clearly for any graphG, ω(G) � Rk(G), soχ(G) � Rk(G)+ω(G)
2 � Rk(G). On the other hand ifχ(G) =

Rk(G), then we have Rk(G) = ω(G) and this means thatG is a complete graph or a star.�
Corollary 2.3. For any graph G with a nonempty edge set, χ(G) � rk(G)+Rk(G)

2 . Moreover, equality holds if and
only if (besides isolated vertices) G is the complete graph Kn or the star K1,n−1.

Proof. First note that the adjacencymatrix of the complete graphKr is of full rank. We haveA(Kr) = J − I ,
whereJ is ther × r matrix with all entries 1. ThusA(Kr) hasr − 1 eigenvalues−1 and a simple eigenvaluer − 1,
and is invertible forr > 1. It follows thatχ(G) � ω(G)+Rk(G)

2 � rk(G)+Rk(G)
2 . �
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