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Abstract

Let G be a graph with a nonempty edge set, we denote the rank of the adjacency mairianof the term rank ofs,
by rk(G) and RKG), respectively. It was conjectured [C. van Nuffelen, Amer. Math. Monthly 83 (1976) 265-266], for any
graph G, x(G) < rk(G). The first counterexample to this conjecture was obtained by Alon and Seymour [J. Graph Theor.
13 (1989) 523-525]. Recently, Fishkind and Kotlov [Discrete Math. 250 (2002) 253-257] have proved that for ang graph
x (G) < RK(G). In this Note we improve Fishkind—Kotlov upper bound and show ghiét) < MZRK(G) . Tocitethisarticle:
S. Akbari, H.-R. Fanai, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Rang, rang maximal et nombre chromatique d’un graphe. Soit G un graphe avec un ensemble d’aréte non vide. On note
rk(G) le rang (réel) d’'une matrice d’adjacendede G et Rk(G) le rang maximal d’'une matrice ayant méme support gue
Il a été conjecturé [C. van Nuffelen, Amer. Math. Monthly 83 (1976) 265-266] que pour tout géaphéG) < rk(G). Le
premier contre-exemple & cette conjecture a été obtenu par Alon et Seymour [J. Graph Theor. 13 (1989) 523-525]. Récemmen
Fishkind et Kotlov [Discrete Math. 250 (2002) 253-257] ont montré que pour tout gi@pheéG) < Rk(G). Dans cette Note,
nous améliorons cette borne et montrgi&r) < w. Pour citer cet article: S. Akbari, H.-R. Fanali, C. R. Acad. Sci.
Paris, Ser. | 340 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Determining a good upper bound for the (vertex) chromatic number of a graph is a very important problem
in graph theory and has been studied extensively over the years. In 1976 van Nuffelen conjectured [4] that the
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chromatic number of any graph with at least one edge tha¢ exceed the rank of its adjacency matrix. The first
counterexample to this conjecture was obtained by Alon and Seymour [1]. They constructed a graph with chromatic
number 32 and with an adjacency matrix of rank 29. It was proved by Kotlov and Lovasz, [2], that the number of
vertices in a twin free graph (a graph with no two vertices with the same set of neighborg\i8)0, wherer
is the rank of adjacency matrix. In [3] it is shown that for any gr@plvith a nonempty edge set the chromatic
number ofG is, at most, the term rank d@¥, and one has equality if and only if (besides isolated vertices
the complete graplX, or the starK1 ,_1. In the present Note we improve this upper bound and show that the
chromatic number of a graph does not exceed the average of rank and term rank. Equality holds if and only if
(besides isolated vertice6) is the complete grapk,, or the starkKq ,,—1.

Before proving our results let us noiduce some necessary notation. A subbsef the vertices ofG is called a
cligueif the induced subgraph oK is a complete graph. We denote the size of the maximum clig@emf w (G).
A subsetS of V(G) is called anindependent set of G if no vertices ofS are adjacent irG. For a graphG, the
maximal numbew (G) of independent vertices is called threlependence number of G.

A k-vertex colouring of a graphG is an assignment df colours{1, ..., k} to the vertices ofG such that no
two adjacent vertices have the same colour. \ldnéex chromatic number x (G) of a graphG is the smallest for
which G has a-vertex colouring. For any grapf of ordern, theadjacency matrix of G is then x n matrix A(G)
whose(i, j)th entry is 1 ifv; # v; are adjacent and O otherwise. Tia@k of G, denoted rkG), is the rank of the
adjacency matrix of; overR. Thetermrank of G, denoted RkG), is the maximal rank of real x n matrix with
support (hon-zero entries) included in the supporiéfr). A two-factor in G is a collection of vertex-disjoint
cycles covering every vertex @f; here a single edge is considered a two-cycle. For a proof of the following result
see, for instance, [5].

Lemma 1.1. For any graph G with a nonempty edge set, RK(G) is the maximum number of verticesin a subgraph
H of G suchthat H has a two-factor.

2. Results
The following theorem is a generalization of Corollary 1 of [3].

Theorem 2.1. For any graph G with a nonempty edge set, x (G) < RKGE2(G  Moreover, equality holds if and
only if (besidesisolated vertices) G isthe complete graph K, or the star K1 ,,—1.

Proof. Clearly we may assume thét is a graph with no isolated vertex. L& be a maximal subgraph af
which has a two-factor. I is a complete graph, then(G) = x (H) = Rk(G). Clearlyw(G) = |V (H)| = RK(G)
and the inequality holds. Thus suppose tHais not a complete graph. Assume thé&t is an independent subset
of V(H) realizing the independence numhetH) = |X;1| of H. If H \ X1 is a complete graph, then we set
w1 = |V(H \ X1)|, otherwise assume that, is an independent subset Bf(H \ X1) with maximal size. If we
continue this procedure, we obtaf(H) = (Ule X;)UV(L), where|X;| > 2 andL is a complete graph of
sizew; (we note that. may be the empty graph). Now we colour each verteXirwith colouri, fori, 1 <i <k,
and we colour all vertices df with w; new colours. We have

Rk(G) — w1 for< RK(G) + w(G) .

2 2
Now if x(G) = x(H), we are done. Thus assume thadG) > x (H). SinceV (G\ H) is independent, there exists
a vertexx € V(G \ H) such that its degree i@ is at leasty (H). Consider a two-factor off as cycles or single

edges. Sincdf is a maximal subgraph af which has a two-factor, it is easy to verify thatannot be adjacent
to a vertex of an odd cycle of the two-factor Hf. On the other hand, every even cycle has a two-factor which is a

x(H) <



S Akbari, H.-R. Fanai / C. R. Acad. Sci. Paris, Ser. | 340 (2005) 181-184 183

matching, sox is adjacent to at most half of the vertices of an even cycle of the two-factlr, diecaused is a
maximal subgraph ofF which has a two-factor. This means that the degreeiofG is at most@. Combining
these inequalities we obtajn(H) < R49) Hencey (G) < B9 4 1 ¢ RKGI(G) gnd the inequality is proved.
Now we show that if equality holds, the@ is the complete graplk,, or the starKi ,—1. We consider the
following two cases:
Case 1x(G) = x(H). As we saw before, we have

Rk(G G Rk(G) — Rk(G G
ROTD) _ 6y = iy <« Ty cHOTOD)

This implies thatw1 = w(G) > 2 and|X;| = 2, for anyi. Soa(H) < 2. If H is a complete graph, then either
G = H =L is a complete graph o # H. In the later case, sincH is a maximal subgraph af which has a
two-factor andH is complete, we havel = K2 andG must be a star. Thus suppose thais not a complete graph.
Hence we have RK) = 2k + w(G), wherek > 1 denotes the number &f;’s defined in the proof of the main
inequality. Hencey (G) = k + w(G). Now if we colour the vertices ok;, by the colouri, fori, 1 <i <k —1,
and we colour all vertices of the complete graplby o (G) new colours, then we can colour two verticesSXaf
with colours already used in the vertex colouringlofThis shows thay (H) < k — 1+ w(G) which contradicts,
x(H) = x(G) =k + 0(G).

Case 2x(G) # x(H). As we saw before, in this case we have

Rk(G G Rk(G
D106 _, 6)< RO

Hencew(G) =2, x(H) = @ and|V(H)| = Rk(G) is an even number.

If |X1| > 4, using the fact thab; < 2, we can colouWV (X1 U L), with at most two colours. Therefore by the
same argument used in the proof of the main inequality, we h&a¥® < Rk%)‘s + 2, a contradiction. It follows
thata(H) < 3. On the other hand, singe(G) > x(H) = @, there is a vertex € V(G \ H) such thatx is
adjacent to at Ieaéf@ vertices of H. Sincew(G) = 2, these@ vertices of H are independent and noting
thata(H) < 3, we conclude thatV (H)| = RKk(G) < 6. Now if H is not a bipartite graphV (H)| = 6 andH has
a cycleC with length 5. Ify € V(H \ C), by maximality of H, one can see thatis not adjacent ty. Thusx is
adjacent to at least three vertices@f This implies thatw(G) > 2, a contradiction. Thu#/ is a bipartite graph
and 2= x(H) = @. HenceG has no odd cycle and so it is a bipartite graph. Thus) = 2 which contradicts
x(G)>x(H)=2. O

+1

We note that the following result of Fishkind and Kotlov [3, Corollary 1] is an immediate consequence of
Theorem 2.1.

Corollary 2.2. For any graph G with a nonempty edge set, x (G) < Rk(G). Moreover, equality holdsif and only if
(besidesisolated vertices) G isthe complete graph K, or thestar K1 ,—1.

Proof. Clearly for any grapiG, »(G) < RK(G), sox(G) < R@F2(@ < Rk(G). On the other hand i (G) =
Rk(G), then we have RIG) = w(G) and this means that is a complete graph or a staro

Corollary 2.3. For any graph G with a nonempty edge set, x (G) < ®GIRKG Voreover, equality holdsif and
only if (besidesisolated vertices) G isthe complete graph K, or the star K1 ,,—1.

Proof. First note that the adjacencyatrix of the complete grapK, is of full rank. We haveA(K,) =J — I,
whereJ is ther x r matrix with all entries 1. Thud (K,) hasr — 1 eigenvalues-1 and a simple eigenvalue- 1,
and is invertible for > 1. It follows thaty (G) < 2@QERKG)  KGIIRKG) =
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