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Abstract

We present a one-dimensional version of the functional form of the geometric Brunn—Minkowski inequality in free
(non-commutative) probability theory. The proof relies on matrix approximation as used recently by Biane and Hiai et al.
to establish free analogues of the logarithmic Sobolev and transportation cost inequalities for strictly convex potentials, that are
recovered here from the Brunn—Minkowski inequality as in the classical case. The method is used to extend to the free setting
the Otto-Villani theorem stating that the logarithmic Sobolev inequality implies the transportation cost inegjaaiity.this
article: M. Ledoux, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
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Résumé

Une inégalité (uni-dimensionnelle) de Brunn—Minkowski libre. Nous présentons une version uni-dimensionnelle de la
forme fonctionnelle de I'inégalité géométrique de Brunn—Minkowski en théorie des probabilités libres. L'argument s’appuie
sur I'approximation matricielle déja mise en ceuvre récemment par Biane et Hiai et al. pour établir les analogues libres des
inégalités de Sobolev logarithmique et de codt du transport pour des potentiels strictement convexes, qui sont ici déduits de
I'inégalité de Brunn—Minkowski comme dans le cas classique. La méthode permet, de la méme fagon, d’étendre au cadre libre
le théoréeme d’Otto-Villani assurant que l'inégalité de Sobolev logarithmique entraine I'inégalité de traleporditer cet
article: M. Ledoux, C. R. Acad. Sci. Paris, Ser. | 340 (2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Brunn—-Minkowski inequality and random matrix approximation

Inits functional form (known as the Prékopa—Leindler theorem), the Brunn—Minkowski inequality indicates that
whenevel € (0, 1) andui, uz, uz are non-negative measurable functiondRdnsuch that

uz(0x + (1 —0)y) = ur(0)?uz(y»)*™? forallx,y eR",
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Justes (funae) (fuzae)

The Brunn—Minkowski inequality has been used recently in the investigation of functional inequalities for
strictly log-concave densities such as logarithmic Sobolev or transportation cost inequalities (cf. e.g. [10,15]).
The pertinence of Hamilton—Jacobi equations in this investigation has been particularly emphasized in [5,11]. The
aim of this Note is to proceed to a similar scheme in the context of one-dimensional free probability theory, using
random matrix approximation following the recent investigations by Biane [2] and Hiai, Petz and Ueda [7,8]. We
rely specifically on the large deviation asymptotics of spectral measures of unitary invariant Hermitian random
matrices put forward by Voiculescu [16] and Ben Arous and Guionnet [1] (cf. [6]). Given a continuous function
QR — R such that liny | |x| €7¥2® = 0 for everye > 0, set

then

Zn(Q) = / Ay ()2 e N Tima 000 g
A
whered = {x; <xp <--- <xy} C RN andAy(x) = ngkd@,(xg — x¢) is the Vandermonde determinant. The
large deviation theorem of [16] and [1] (see also [9]) indicates that
. 1 ~
N'inoo N2 logZy (Q) =Ep(vo) (1)

where, for every probability measureon R,

5Q(V)=// |09|x—yIdV(X)dV(y)—/Q(X)dv(X)

is the weighted energy integral with extremal (compactly supported) meaguraximizing€y (cf. [13,6]). (For
the choice ofQ(x) = % v is the semicircle law.)

Let Uy, Uz, Us be real-valued continuous functions Brsuch that, for every > 0, limjy— « x| €7¢Yi®) =0,
i=1,23. Set

wi(x) = Ay (x)2e VISV, (v), xeRY, i=1,23,

Since —logAy is convex on the convex sef, assuming that, for somé € (0,1) and all x,y € R,
Us(@x + (1 —0)y) < 0U1(x) + (1 — 8)Ua(y), the Brunn—Minkowski theorem applies i, u», uz on RY to
yield

Zy(U3) > Zn (U Zn (U2
Taking the limit (1) immediately yields the following free analogue of the functional Brunn—Minkowski inequality
onR.
Theorem. Let Ui, Uz, Us be real-valued continuous functions on R such that, for every ¢ > 0O,
lim )00 x| €76V = 0,i = 1,2, 3. Assume that for some 6 € (0,1) and all x, y € R,
Us(6x + (1= 0)y) <OUL(x) + (1= O)U2(y).
Then
Eus(vyy) 2 08y, (vuy) + (1 —60)Eu, (vu,).

The free analogue of Shannon’s entropy power inequality due to Szarek and Voiculescu [14] may be recovered
along the same lines.
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2. Freelogarithmic Sobolev and transportation cost inequalities

We next show how the preceding free Brunn—Minkowski inequality may be used, following the classical case,
to recapture both the free logarithmic Sobolev inequality of Voiculescu [17] (in the form put forward in [3] and
extended in [2]) and the free quadratic transportation cost inequality of [4,8] for quadratic and more general strictly
convex potential®).

Let Q be a real-valued continuous function Bnsuch that liny|— o x| €7°2®) = 0 for everye > 0. Forv,
probability measure oR, define the free entropy of (with respect tap) [17,3,2] as

SWwlvg)=Egg) —Eov) (=0).

If R — R is bounded and continuous, it is convenient to set bglpw) = o, (vo—y) — Ep(vg). For every
probability measure onR,

Jjo(@) >/<pdv+5g<v> —Eo(vg) =/¢)dv ~Zwlvg)

with equality forv = vg_,. In particularjg (@) > [ ¢ dvg.

Assume now that@ is C1 and such that)Q(x) — %xz is convex for some > 0. For bounded continuous
functions f, g: R — R such thatg(x) < f(y) + 5lx — y|2, we may apply the free Brunn—Minkowski theorem,
as in the classical case (cf. [11]), th = Q — (1 — 0)g, U2 = Q + 6f and Uz = Q. Thus, by the theorem,
Jo((L=0)g) + 1;—9jQ(—9f) < 0. Asf — 0, it follows that for every probability measure

/gdv—/fvagi(uwQ)

(in other wordsjo (g) < [ f dvp). By the Monge—Kantorovitch—Rubinstein theorem (cf. e.g. [15]), this is the dual
form of the free quadratic transportation cost inequality

Wa(v, 19)? < %Sw |vo) )

recently put forward in [4] for the semicircle law associated to the quadratic potential, and in [8] for strictly convex
potentials (wheréVz(v, vp) is the Wasserstein distance betweendv).

The free logarithmic Sobolev inequality of [17], extended to strictly convex potentials in [2], follows in the same
way from the free Brunn—Minkowski theorem. We follow [2] where the matrix approximation is used similarly to
this task. Fix a probability measusewith compact support and smooth densityon R. Define aC?® function
R on R such thatR(x) = 2 ['log|x — y|dv(y) on suppv), R(x) = Q(x) for |x| large, and such thak(x) >
2 [log|x — y|dv(y) everywhere. By the uniqueness theorem of extremal measures of weighted potentials (cf.
[13]), it is easily seen that the energy functiodal is maximized at the unique poing = v. Define thenf, with
compact support, by = Q — R 4 C where the consta@ (= Eg(vg) — Er(vr)) is chosen so thalp (f) = 0. Let

g (@) =infyer[f(y)+ 2—1t(x —y)?2],t > 0,x € R, be the infimum-convolution of with the quadratic cost, solution
of the Hamilton—-Jacobi equatidng; + %g;Z = 0 with initial condition f. As in the classical case (cf. [11]), apply
the Brunn—Minkowski theorem t6/'; = Q — %g,, t= %, U= 0Q,Usz=Q — f, to get thatjo (1 + ct)g;) <
jo(f) =0 for everyr > 0. In particular thereforef (1 + cr)g; dv < ¥ (v | vg), and, sincev = vg = vp_¢, as
t— 0,

S(uwQ):/fdugz—lcff’zdu.

Now, f'= Q' — Hp whereHp(x) =p.v. [ ZXPT(’y') dy is the Hilbert transform (up to a multiplicative factor) of the
(smooth) density of v. Hence the preceding amounts to the free logarithmic Sobolev inequality

- 1 / 1
2<v|vQ><2—C/[Hp—Q]Zdv=z—cl(v|vg> ®
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as established in [2], wherél | vy) is known as the free Fisher informatiomotith respect ta g [17,3]. Careful
approximation arguments to reach arbitrary probability measu¢esth density in L3(R)) are described in [7].

The Hamilton—Jacobi approach may be used to prove, as in the classical case, the free analogue of the Otto
Villani theorem [12] (cf. [15,5,11]) stating that, for a given probability measyre=de~2 dx on R (with a 1
potentialQ such that link | o |x| €7°¢™) = 0 for everye > 0), the free logarithmic Sobolev inequality (3) always
implies the free transportation cost inequality (2). To this task, given a compactly suppdrfadction f on R
anda € R, set j, = jo((a + ct)g) and f; = (a + ct)g; — j; so thatjo(f;) = 0. Denote for simplicity by,
the extremal measure for the potent@al— f;. Then the logarithmic Sobolev inequality (3) can be expressed as
[fidv <2 [ £/%dv;. In other words,

c(a+ct) / g vy —cjy < —(a+ct)? / 0; g dvy.
On the support of; (cf. [13]),

2/|Og|x—y|dv;(y)=Q—fl+C,

where C; = [[log|x — y|dv,dv; + Eg—f (v;). Since jo(fy) = Eg—f(v) — Eg(vg) = 0, it follows that

[ 9 f; dv; =0. Therefore,cj; > (a + ct)d;j; and hence(a + ct)~1j, is non-increasing irv. In particular,
—F1J1/¢ < % jo which fora = 0 amounts tgjg () < [ f dvg, that is the dual form of (2). This approach through
the Hamilton—Jacobi equations has some similarities with the use of the (complex) Burgers equation in [4].
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