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Abstract

We present a one-dimensional version of the functional form of the geometric Brunn–Minkowski inequality i
(non-commutative) probability theory. The proof relies on matrix approximation as used recently by Biane and Hia
to establish free analogues of the logarithmic Sobolev and transportation cost inequalities for strictly convex potentials
recovered here from the Brunn–Minkowski inequality as in the classical case. The method is used to extend to the fre
the Otto–Villani theorem stating that the logarithmic Sobolev inequality implies the transportation cost inequality.To cite this
article: M. Ledoux, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une inégalité (uni-dimensionnelle) de Brunn–Minkowski libre. Nous présentons une version uni-dimensionnelle d
forme fonctionnelle de l’inégalité géométrique de Brunn–Minkowski en théorie des probabilités libres. L’argument s
sur l’approximation matricielle déjà mise en œuvre récemment par Biane et Hiai et al. pour établir les analogues l
inégalités de Sobolev logarithmique et de coût du transport pour des potentiels strictement convexes, qui sont ici d
l’inégalité de Brunn–Minkowski comme dans le cas classique. La méthode permet, de la même façon, d’étendre au c
le théorème d’Otto–Villani assurant que l’inégalité de Sobolev logarithmique entraîne l’inégalité de transport.Pour citer cet
article : M. Ledoux, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Brunn–Minkowski inequality and random matrix approximation

In its functional form (known as the Prékopa–Leindler theorem), the Brunn–Minkowski inequality indicate
wheneverθ ∈ (0,1) andu1, u2, u3 are non-negative measurable functions onR

n such that

u3
(
θx + (1− θ)y

)
� u1(x)θu2(y)1−θ for all x, y ∈ R

n,

E-mail address: ledoux@math.ups-tlse.fr (M. Ledoux).
1631-073X/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2004.12.017



302 M. Ledoux / C. R. Acad. Sci. Paris, Ser. I 340 (2005) 301–304

es for
10,15]).
11]. The
, using
8]. We
andom
nction

he

ality

covered
then ∫
u3 dx �

(∫
u1 dx

)θ(∫
u2 dx

)1−θ

.

The Brunn–Minkowski inequality has been used recently in the investigation of functional inequaliti
strictly log-concave densities such as logarithmic Sobolev or transportation cost inequalities (cf. e.g. [
The pertinence of Hamilton–Jacobi equations in this investigation has been particularly emphasized in [5,
aim of this Note is to proceed to a similar scheme in the context of one-dimensional free probability theory
random matrix approximation following the recent investigations by Biane [2] and Hiai, Petz and Ueda [7,
rely specifically on the large deviation asymptotics of spectral measures of unitary invariant Hermitian r
matrices put forward by Voiculescu [16] and Ben Arous and Guionnet [1] (cf. [6]). Given a continuous fu
Q :R → R such that lim|x|→∞ |x|e−εQ(x) = 0 for everyε > 0, set

Z̃N (Q) =
∫
A

∆N(x)2 e−N
∑N

k=1 Q(xk) dx

whereA = {x1 < x2 < · · · < xN } ⊂ R
N and∆N(x) = ∏

1�k<��N(x� − xk) is the Vandermonde determinant. T
large deviation theorem of [16] and [1] (see also [9]) indicates that

lim
N→∞

1

N2
logZ̃N (Q) = EQ(νQ) (1)

where, for every probability measureν on R,

EQ(ν) =
∫∫

log|x − y|dν(x)dν(y) −
∫

Q(x)dν(x)

is the weighted energy integral with extremal (compactly supported) measureνQ maximizingEQ (cf. [13,6]). (For

the choice ofQ(x) = x2

2 , νQ is the semicircle law.)
Let U1, U2, U3 be real-valued continuous functions onR such that, for everyε > 0, lim|x|→∞ |x|e−εUi(x) = 0,

i = 1,2,3. Set

ui(x) = ∆N(x)2 e−N
∑N

k=1 Ui(xk)1A(x), x ∈ R
N, i = 1,2,3.

Since − log∆N is convex on the convex setA, assuming that, for someθ ∈ (0,1) and all x, y ∈ R,
U3(θx + (1 − θ)y) � θU1(x) + (1 − θ)U2(y), the Brunn–Minkowski theorem applies tou1, u2, u3 on R

N to
yield

Z̃N (U3) � Z̃N (U1)
θ Z̃N(U2)

1−θ .

Taking the limit (1) immediately yields the following free analogue of the functional Brunn–Minkowski inequ
on R.

Theorem. Let U1, U2, U3 be real-valued continuous functions on R such that, for every ε > 0,
lim|x|→∞ |x|e−εUi(x) = 0, i = 1,2,3. Assume that for some θ ∈ (0,1) and all x, y ∈ R,

U3
(
θx + (1− θ)y

)
� θU1(x) + (1− θ)U2(y).

Then

EU3(νU3) � θEU1(νU1) + (1− θ)EU2(νU2).

The free analogue of Shannon’s entropy power inequality due to Szarek and Voiculescu [14] may be re
along the same lines.
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2. Free logarithmic Sobolev and transportation cost inequalities

We next show how the preceding free Brunn–Minkowski inequality may be used, following the classica
to recapture both the free logarithmic Sobolev inequality of Voiculescu [17] (in the form put forward in [3
extended in [2]) and the free quadratic transportation cost inequality of [4,8] for quadratic and more genera
convex potentialsQ.

Let Q be a real-valued continuous function onR such that lim|x|→∞ |x|e−εQ(x) = 0 for everyε > 0. For ν,
probability measure onR, define the free entropy ofν (with respect toνQ) [17,3,2] as

Σ̃(ν | νQ) = EQ(νQ) − EQ(ν) (� 0).

If ϕ :R → R is bounded and continuous, it is convenient to set belowjQ(ϕ) = EQ−ϕ(νQ−ϕ) − EQ(νQ). For every
probability measureν on R,

jQ(ϕ) �
∫

ϕ dν + EQ(ν) − EQ(νQ) =
∫

ϕ dν − Σ̃(ν | νQ)

with equality forν = νQ−ϕ . In particularjQ(ϕ) �
∫

ϕ dνQ.
Assume now that (Q is C1 and such that)Q(x) − c

2x2 is convex for somec > 0. For bounded continuou
functionsf,g :R → R such thatg(x) � f (y) + c

2|x − y|2, we may apply the free Brunn–Minkowski theore
as in the classical case (cf. [11]), toU1 = Q − (1 − θ)g, U2 = Q + θf and U3 = Q. Thus, by the theorem
jQ((1− θ)g) + 1−θ

θ
jQ(−θf ) � 0. Asθ → 0, it follows that for every probability measureν,∫

g dν −
∫

f dνQ � Σ̃(ν | νQ)

(in other wordsjQ(g) �
∫
f dνQ). By the Monge–Kantorovitch–Rubinstein theorem (cf. e.g. [15]), this is the

form of the free quadratic transportation cost inequality

W2(ν, νQ)2 � 1

c
Σ̃(ν | νQ) (2)

recently put forward in [4] for the semicircle law associated to the quadratic potential, and in [8] for strictly c
potentials (whereW2(ν, νQ) is the Wasserstein distance betweenν andνQ).

The free logarithmic Sobolev inequality of [17], extended to strictly convex potentials in [2], follows in the
way from the free Brunn–Minkowski theorem. We follow [2] where the matrix approximation is used simila
this task. Fix a probability measureν with compact support and smooth densityp on R. Define aC1 function
R on R such thatR(x) = 2

∫
log|x − y|dν(y) on supp(ν), R(x) = Q(x) for |x| large, and such thatR(x) �

2
∫

log|x − y|dν(y) everywhere. By the uniqueness theorem of extremal measures of weighted potenti
[13]), it is easily seen that the energy functionalER is maximized at the unique pointνR = ν. Define thenf , with
compact support, byf = Q−R +C where the constantC (= EQ(νQ)−ER(νR)) is chosen so thatjQ(f ) = 0. Let
gt (x) = infy∈R[f (y)+ 1

2t
(x −y)2], t > 0,x ∈ R, be the infimum-convolution off with the quadratic cost, solutio

of the Hamilton–Jacobi equation∂tgt + 1
2g′

t
2 = 0 with initial conditionf . As in the classical case (cf. [11]), app

the Brunn–Minkowski theorem toU1 = Q − 1
θ
gt , t = 1−θ

cθ
, U2 = Q, U3 = Q − f , to get thatjQ((1 + ct)gt ) �

jQ(f ) = 0 for everyt > 0. In particular therefore,
∫
(1 + ct)gt dν � Σ̃(ν | νQ), and, sinceν = νR = νQ−f , as

t → 0,

Σ̃(ν | νQ) =
∫

f dν � 1

2c

∫
f ′2 dν.

Now, f ′ = Q′ − Hp whereHp(x) = p.v.
∫ 2p(y)

x−y
dy is the Hilbert transform (up to a multiplicative factor) of th

(smooth) densityp of ν. Hence the preceding amounts to the free logarithmic Sobolev inequality

Σ̃(ν | νQ) � 1
∫

[Hp − Q′]2 dν = 1
I(ν | νQ) (3)
2c 2c
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Hilbert
as established in [2], where I(ν | νQ) is known as the free Fisher information ofν with respect toνQ [17,3]. Careful
approximation arguments to reach arbitrary probability measuresν (with density in L3(R)) are described in [7].

The Hamilton–Jacobi approach may be used to prove, as in the classical case, the free analogue of
Villani theorem [12] (cf. [15,5,11]) stating that, for a given probability measure dµ = e−Q dx on R (with a C1

potentialQ such that lim|x|→∞ |x|e−εQ(x) = 0 for everyε > 0), the free logarithmic Sobolev inequality (3) alwa
implies the free transportation cost inequality (2). To this task, given a compactly supportedC1 functionf on R

and a ∈ R, set jt = jQ((a + ct)gt ) and ft = (a + ct)gt − jt so thatjQ(ft ) = 0. Denote for simplicity byνt

the extremal measure for the potentialQ − ft . Then the logarithmic Sobolev inequality (3) can be expresse∫
ft dνt � 1

2c

∫
f ′

t
2 dνt . In other words,

c(a + ct)

∫
gt dνt − cjt � −(a + ct)2

∫
∂tgt dνt .

On the support ofνt (cf. [13]),

2
∫

log|x − y|dνt (y) = Q − ft + Ct

where Ct = ∫∫
log|x − y|dνt dνt + EQ−ft (νt ). Since jQ(ft ) = EQ−ft (νt ) − EQ(νQ) = 0, it follows that∫

∂tft dνt = 0. Therefore,cjt � (a + ct)∂t jt and hence(a + ct)−1jt is non-increasing int . In particular,
1

a+1j1/c � 1
a
j0 which for a = 0 amounts tojQ(g) �

∫
f dνQ, that is the dual form of (2). This approach throu

the Hamilton–Jacobi equations has some similarities with the use of the (complex) Burgers equation in [4]
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