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Abstract

By applying geometric techniques to real analytic singularly perturbed vector fields on the plane, we develop a way
bound on the Gevrey type of the Taylor development of center manifolds at normally hyperbolic turning points, and sh
the same technique is useful in the study of degenerate planar turning points and their corresponding canard manifo
end of the Note, we motivate the interest in Gevrey asymptotics by briefly discussing its relation with bifurcation delayTo cite
this article: P. De Maesschalck, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Propriétés Gevrey de systèmes singulièrement perturbées. Suivant l’approche géométrique dans l’étude de problème
perturbations singulières dans le plan, nous développons une méthode pour majorer le type Gevrey des variétés ce
points normalement hyperboliques, et des variétés canards aux points tournants. A la fin de la note, nous motivons l
l’asymptotique Gevrey en décrivant le rapport avec le retard à la bifurcation.Pour citer cet article : P. De Maesschalck, C. R.
Acad. Sci. Paris, Ser. I 340 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Consider a real analytic family of vector fieldsXε on the plane. We suppose thatγ is an isolated curve o
singular points ofX0, that does not persist forε > 0 (e.g. the family is singularly perturbed). In general, points
γ are normally hyperbolic w.r.t.X0. This situation is locally modelled by the nonlinear analytic

Xε :

{
ẋ = εσ ,

ẏ = F(x)y + εG(x, y, ε),
(1)
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with σ ∈ N1, F and G real analytic near(x, y, ε) = (0,0,0) and with F(0) �= 0. It is well known that there
exists a unique formal expansiony = ∑∞

n=1 yn(x)εn that is defined for allx ∈ D, whereD is some open regio

containing the origin, for which this series is a formal solution toεσ dy
dx

= yF + εG. Also the asymptotics of suc
series is known (see for example [5]): it is Gevrey-1/σ of typeT for someT > 0, meaning that supx |yn(x)| �
CT n/σ �(α +n/σ) for someC,α > 0. Our aim is to develop a method to give a bound for the typeT atx = 0, in a
way that serves for the study of turning point situations. Such situations are modelled by systems where an
point of γ is not normally hyperbolic. To fix the ideas, we concentrate on the model (2), although our me
applicable to a wider range of systems:

Xε,a:

{
ẋ = εσ ,

ẏ = a + f (x)y + εσ g(x, y, ε),
(2)

wheref (x) = λxp + o(xp) asx → 0 (with λ > 0 andp odd). Forp = 1, this turning point system has a form
canard solutiony = ∑∞

n=1 yn(x)εn and control curvea = ∑∞
n=1 anε

n. It is known that there exist actual overstab
solutions (these are canard solutions defined in a full complex neighbourhood of the turning point) and
curves, asymptotic to the formal series. The presence of overstable solutions is established in a small neigh
(exponentially small w.r.t.ε) of a control curve in the(ε, a)-plane. Forp > 1, a similar result is true [1], provide
that one looks for overstable solutions in more-dimensional parameter spaces(ε, a1, . . . , ap): overstable solution
are found in an exponentially small neighbourhood of a (codimension-p) curve in the(ε, a1, . . . , ap)-plane. On
the other hand, usingC∞ geometric singular perturbation theory (see [3,2]), one can prove (forp = 1 as well as
for p > 1) the existence of real canard solutionsy = φ(x, ε), in the neighbourhood of a codimension-1 manif
a = A(ε) in the parameter space(ε, a). By searching for canard solutions inR instead of overstable solutions,
broader class of solutions is found. However, manifolds of such canard solutions are not necessarily differentia
at the turning point and hence do not necessarily have a formal expansion. Indeed, using the geometric
perturbation theory, canard solutions are obtained in a blown up phase space. The smoothness of the canard
expressed w.r.t. blow up coordinates, and is lost after blowing down. Nevertheless, the control curvea = A(ε) in
parameter space has a well-defined asymptotic expansion w.r.t.ε. A combination of analytic techniques with th
notion ‘family blow up’ leads to a proof that also this control curve satisfies Gevrey-1/σ estimates. In Section 3
we determine a bound on its Gevrey type.

2. Treating normally hyperbolic points

We consider (1) and defineX = Xε + 0 ∂
∂ε

. In the next section, we will show how a similar treatment app
to (2). We blow upγ with the quasi-homogeneous cylindrical blow up formulas

(x, ε) = (uσ x̄, uε̄), u � 0, (x̄, ε̄) ∈ S1+ := {
(x̄, ε̄) ∈ S1 ⊂ R2: ε̄ � 0

}
.

The study of the blown up vector field is done in charts. We are in particular interested in the phase-dir
rescaling chart{x̄ = −1} and the family rescaling chart{ε̄ = 1}. In the first chart, we use the transformati
formulas{x = −uσ , ε = uε̄} so that there,X is given by (after multiplication withσ ):

σX:




u̇ = −uε̄σ ,

˙̄ε = ε̄σ+1,

ẏ = σF(−uσ )y + σuε̄G(−uσ , y,uε̄).

(3)

The results that we present are formulated in terms of (3). We complexifyσX, i.e. consider it foru, ε̄, y ∈ C, but
to keepε̄ close to the positive real axis, and letu vary in the complex plane. For allu ∈ C where it makes sense
i.e. for which[0, u] × {0} × {0} lies in the interior of the domain of (3), we define

R(u) := �
(

1

uσ

u∫
σ ũσ−1F(−ũσ )dũ

)
.

0
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Theorem 2.1 [2]. Consider the boundary curveΣ: {u = u0, y = s(ε̄)}, with s analytic at ε̄ = 0 and withu0 ∈ C
such thatR(u0) < 0. There exists a manifoldW : y = Φ(u, ε̄) with Σ ⊂ W , and such thatW is invariant under(3).
The manifold is defined for̄ε in some local sectorial neighbourhood ofε̄ = 0 containing the positive real axis, an
for u in a local sectorial neighbourhood ofu = 0 containing the complex segment[0, u0].

Let T > 0 be such that−1/T = |u0|σ R(u0). Suppose thatC(T ) := {u ∈ C: |u|σ R(u) = −1/T } is angle-
parametrizable1 around the origin. Then, for allT ′ > T the manifoldW is Gevrey-1/σ at u = 0 with typeT ′|ε̄|σ
(but asT ′ → T , the sectorial neighbourhood for(u, ε̄) may shrink to[0, u0] × {0}).

The existence ofW follows from the saddle behaviour of (3) at the origin, and is based on direct majora
of solutions to (3). The Gevrey estimates are based on a theorem of Ramis–Sibuya, relating sectorial cov
analytic bounded functions to the Gevrey type. To guarantee the existence of such sectorial coverings, i
that C(T ) is angle-parametrizable around the originu = 0. We remark that one can prove that forT > 0 large
enough,C(T ) is angle-parametrizable around the origin.

Let us now explain how such manifolds are important in the study of the original vector field (1). To tha
we intersect the manifoldW with {ε̄ = ε̄0}. This yields a Gevrey-curvey = Φ(u, ε̄0) that is also visible in the
family rescaling chart{ε̄ = 1}. In that chart, we use the transformation formulas{x = uσ x̄, ε = u}, and it can
easily be verified that the above section ofW is seen as a curve{x̄ = −ε̄−σ

0 , y = Φ(u/ε̄0, ε̄0)}. This shows tha
if y = Φ(u, ε̄0) is Gevrey-1/σ with type T ′|ε̄0|σ , then in the family rescaling chart this yields a curve tha
Gevrey-1/σ of typeT ′. In the family rescaling chart,X is determined by the family

Xu:

{ ˙̄x = 1,

ẏ = F(uσ x̄)y + uG(uσ x̄, y,u)

making it clear that in this chart, there are no singular points. Hence, the transition from the plane{x̄ = −ε̄−σ
0 } to

the plane{x̄ = 0} is given by an analytic diffeomorphism. Hence, continuing the orbits of the invariant man
W in this chart, we find a curve{y = θ(u), x̄ = 0} with θ Gevrey-1/σ of typeT ′, for all T ′ > T . Blowing down
this curve gives the curve{y = θ(ε), x = 0}. This yields:

Theorem 2.2. Let T be a value for whichC(T ) is angle-parametrizable aroundu = 0. Then, the unique forma
expansion solving the o.d.e. associated to(1) is, atx = 0, Gevrey-1/σ of typeT ′, for anyT ′ > T .

3. Treating turning points

A similar technique permits to treat systems like (2). The blow up is not cylindrical, but we blow up the tu
point, using

(x, y, ε) = (uσ x̄, uσ ȳ, umε̄), u � 0, (x̄, ȳ, ε̄) ∈ S2, ε̄ � 0,

with m = p + 1. In the search for canards, we restrict the parameter space(ε, a) to a regionaε−σ ∈ [−A0,A0]. To
that end, we replacea by Aεσ . In the phase-directional rescaling chart{x̄ = −1}, the vector field (2) yields (afte
division byupσ /σ ):

σu−pσ X:




u̇ = −uε̄σ ,

˙̄ε = mε̄σ+1,

˙̄y = σ ε̄σ A + σu−pσ f (−uσ )ȳ + σ ε̄σ g(−uσ ,uσ ȳ, umε̄) + σ ε̄σ ȳ.

(4)

1 A setΩ ⊂ C is angle-parametrizablearound 0∈ C if Ω contains the image ofθ → r(θ)eiθ for some positive 2π -periodicC0-function r .
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Write F(u) = u−pσ f (−uσ ). (Then,F is analytic andF(0) = −λ < 0.) The new equation is of the same fo
as (3), except that the invariant foliation d(uε̄) = 0 in (3) is replaced by d(umε̄) = 0. We defineRm(u) :=
�( 1

umσ

∫ u

0 σ ũmσ−1F(ũ)dũ), and draw conclusions similar to those in Theorem 2.1:

Theorem 3.1 [2]. Consider the boundary curveΣ: {u = u0, y = s(ε̄,A)}, with s analytic atε̄ = 0 and withu0 ∈ C
such thatRm(u0) < 0. There exists a manifoldW : y = Φ(u, ε̄,A) invariant under(4) and with Σ ⊂ W . It is
defined forε̄ in a local sectorial neighbourhood of̄ε = 0 containing the positive real axis, and foru in some local
sectorial neighbourhood ofu = 0 containing the segment[0, u0].

Let T > 0 be such that−1/T = |u0|mσ Rm(u0). Suppose thatCm(T ) := {u ∈ C: |u|mσ Rm(u) = −1/T } is
angle-parametrizable. Then the manifoldW is Gevrey-1/mσ at u = 0 with typeT ′|ε̄|mσ , for all T ′ > T .

As before, the invariant manifoldsW are continued in the chartε̄ = 1, where there are no further singularitie
This means that the invariant manifold can be continued until its intersection with the plane{x = 0} (or in blown up
coordinates, with the plane{x̄ = 0} in the chart{ε̄ = 1}). Such intersection is a Gevrey-1/mσ curveȳ = θ(u,A),
uniform in A. As our interest goes to real dynamics, one chooses in particularu0 ∈ R+, so that the manifoldW is
a real manifold over the attracting real branch ofγ . The same construction can be repeated if one looks in the
{x̄ = 1}, where the repelling real branch ofγ is seen foru � 0. One can now take two boundary curvesΣ− (in the
chart{x̄ = −1}, atu0 ∈ R+) andΣ+ (in the chart{x̄ = +1}, atu′

0 ∈ R+), and ‘match’ both invariant manifolds i
the plane{x̄ = 0}, using an implicit function argument w.r.t.A. A Gevrey-version of the implicit function theore
allows to find a curve in parameter spaceA =A(u), Gevrey-1/mσ in u of typeT ′ for all T ′ > T :

Theorem 3.2 [2]. Let T be a value for whichCm(T ) is angle-parametrizable aroundu = 0. Then, the unique
formal control curve(w.r.t. ε1/m, with m = p + 1) along which canard solutions are found in(2) is Gevrey-1/mσ

w.r.t. ε1/m, of typeT ′, for all T ′ > T . All canard manifolds of(2) intersect{x = 0} in a curve that is smooth
w.r.t. ε1/m, which is formally Gevrey-1/mσ of typeT ′, for all T ′ > T .

Systems with canard solutions are systems exhibiting bifurcation delay: orbits tend to follow the repelling
of γ for a while, instead of immediately diverting from it after passing the turning point. For vector fieldsXε , the
following question is interesting: doesXε exhibit bifurcation delay, and if so, what is the maximum delay?
equivalent formulation of the question is the following: doesXε have canard solutions, and if so, what is
maximum size of such a canard solution? In general, there is a direct relation between the Gevrey type oA and
the maximum size of complex ‘overstable’ solutions: one can think of 1/T as the distance to the turning poi
of the first obstruction in resummating formal series to analytic functions in sectors. This first obstructio
limit the size of overstable solutions, but the obstruction may be complex. In that case, it is possible to fin
resummation methods inR (through analytic continuation of the Borel transforms). For a study of real can
the determination of the type hence no longer suffices to find the maximum canard: a more detailed an
the location of obstructions inR is needed. Therefore, Theorem 3.2 is only a starting point for such an ana
Nevertheless, it already implies good results for important classes of systems (for example, whenf (x) = λxp,
g polynomial in (2)). Interesting related results can also be found in [4], where ‘S∞-canards’ are studied.
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