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Abstract

By applying geometric techniques to real analytic singularly perturbed vector fields on the plane, we develop a way to give a
bound on the Gevrey type of the Taylor development of center manifolds at normally hyperbolic turning points, and show that
the same technique is useful in the study of degenerate planar turning points and their corresponding canard manifolds. At the
end of the Note, we motivate the interest in Gevrey asymptotics by briefly discussing its relation with bifurcatiomaleikzy.
thisarticle: P. De Maesschalck, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
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Résumé

Propriétés Gevrey de systemes singulierement perturbées. Suivant I'approche géométrique dans I'étude de problemes de
perturbations singulieres dans le plan, nous développons une méthode pour majorer le type Gevrey des variétés centrales al
points normalement hyperboliques, et des variétés canards aux points tournants. A la fin de la note, nous motivons l'intérét de
I'asymptotique Gevrey en décrivant le rapport avec le retard a la bifurcdoom.citer cet article: P. De Maesschalck, C. R.

Acad. Sci. Paris, Ser. | 340 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Consider a real analytic family of vector field& on the plane. We suppose thatis an isolated curve of
singular points ofX, that does not persist fer> 0 (e.g. the family is singularly perturbed). In general, points of
y are normally hyperbolic w.r.tXo. This situation is locally modelled by the nonlinear analytic

xo 1F=< 1)
| y=Fx)y+eGx,y,e),
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with o € N1, F and G real analytic neakx, y,¢) = (0,0,0) and with F(0) # 0. It is well known that there
exists a unique formal expansign= Y .- ; y,(x)e" that is defined for alk € D, whereD is some open region

containing the origin, for which this series is a formal solutiomct% = yF + €G. Also the asymptotics of such

series is known (see for example [5]): it is Gevrejslof type T for someT > 0, meaning that sygy, (x)| <
CT"°T(a +n/o) for someC, o > 0. Our aim is to develop a method to give a bound for the ®@egx = 0, in a

way that serves for the study of turning point situations. Such situations are modelled by systems where an isolatec
point of y is not normally hyperbolic. To fix the ideas, we concentrate on the model (2), although our method is
applicable to a wider range of systems:

Xea: {)f:eg’ )
’ y=a+ f(x)y+€7g(x,y,€),

where f(x) = Ax? + o(xP) asx — 0 (with A > 0 andp odd). Forp = 1, this turning point system has a formal

canard solutiory = > ; y,(x)e” and control curve = Y ; a,e”. It is known that there exist actual overstable

solutions (these are canard solutions defined in a full complex neighbourhood of the turning point) and control

curves, asymptotic to the formal series. The presence of overstable solutions is established in a small neighbourhoc

(exponentially small w.r.te) of a control curve in thé€e, a)-plane. Forp > 1, a similar result is true [1], provided

that one looks for overstadbolutions in more-dimensional parameter spdegs, . .., a,): overstable solutions

are found in an exponentially small neighbourhood of a (codimengjoturve in the(e, ay, ..., ap)-plane. On

the other hand, using°® geometric singular perturbation theory (see [3,2]), one can provep(ferl as well as

for p > 1) the existence of real canard solutions ¢ (x, €), in the neighbourhood of a codimension-1 manifold

a = A(e) in the parameter space, a). By searching for canard solutions Rinstead of overstable solutions, a

broader class of solutions is found. However, manifoldsuchscanard solutions are not necessarily differentiable

at the turning point and hence do not necessarily have a formal expansion. Indeed, using the geometric singula

perturbation theory, canard soloris are obtained in a blown up phasasp The smoothness of the canards is

expressed w.r.t. blow up coordinates, and is lost after blowing down. Nevertheless, the contral €uA) in

parameter space has a well-defined asymptotic expansionewAtcombination of analytic techniques with the

notion ‘family blow up’ leads to a proof that also this control curve satisfies Gevyeyestimates. In Section 3,

we determine a bound on its Gevrey type.

2. Treating normally hyperbolic points

We consider (1) and defing = X, + 0%. In the next section, we will show how a similar treatment applies
to (2). We blow upy with the quasi-homogeneous cylindrical blow up formulas
(x, €)= @’%,ué), u>0, (¥,est:={F HestcRZe=0}.
The study of the blown up vector field is done in charts. We are in particular interested in the phase-directional

rescaling char{x = —1} and the family rescaling chafg = 1}. In the first chart, we use the transformation
formulas{x = —u?, € = u€} so that thereX is given by (after multiplication witla):

oX: {é=é&otl (3)
y=0F(—u®°)y +oueG(—u°,y, ué).
The results that we present are foraield in terms of (3). We complexify X, i.e. consider it fow, €, y € C, but
to keepe close to the positive real axis, and lewvary in the complex plane. For alle C where it makes sense,
i.e. for which[0, u] x {0} x {0} lies in the interior of the domain of (3), we define

u

R(u) ;:zn(%/mz“—lF(—a“)dﬁ).

0
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Theorem 2.1 [2]. Consider the boundary curvE: {u = ug, y = s(€)}, with s analytic ate = 0 and withug € C
such thatR (ug) < 0. There exists a manifol?: y = @ (u, €) with ¥ ¢ W, and such thaW is invariant under(3).
The manifold is defined farin some local sectorial neighbourhood&f 0 containing the positive real axis, and
for u in a local sectorial neighbourhood af= 0 containing the complex segmdft uo].

Let T > 0 be such that-1/T = |uog|® R(uo). Suppose tha€(T) :={u € C: |u|°R(u) = —1/T} is angle-
parametrizablé around the origin. Then, for all’” > T the manifoldW is Gevreyd/o at u = 0 with typeT’|é|°
(but asT’ — T, the sectorial neighbourhood f@r, €) may shrink td0, ug] x {0}).

The existence of¥ follows from the saddle behaviour of (3) at the origin, and is based on direct majorations
of solutions to (3). The Gevrey estimates are based on a theorem of Ramis—Sibuya, relating sectorial coverings o
analytic bounded functions to the Gevrey type. To guarantee the existence of such sectorial coverings, it suffices
thatC(T) is angle-parametrizable around the origia= 0. We remark that one can prove that for> 0 large
enough((T) is angle-parametrizable around the origin.

Let us now explain how such manifolds are important in the study of the original vector field (1). To that end,
we intersect the manifoldV with {€ = €p}. This yields a Gevrey-curve = @ (u, €g) that is also visible in the
family rescaling char{e = 1}. In that chart, we use the transformation formujas= u°x, ¢ = u}, and it can
easily be verified that the above sectionWfis seen as a curvik = —€,7, y = @ (u/éo, €0)}. This shows that
if y=®(u,¢€p) is Gevrey-Yo with type T'|€p|?, then in the family rescaling chart this yields a curve that is
Gevrey-Yo of typeT’. In the family rescaling char is determined by the family

X . .% =1,
" y=FWu’x)y+uGu’x,y,u)

making it clear that in this chart, there are nogilar points. Hence, the transition from the plgfe= —€;”} to

the plane{x = 0} is given by an analytic diffeomorphism. Hence, continuing the orbits of the invariant manifold
W in this chart, we find a curvey = 6(u), x = 0} with & Gevrey-Yo of typeT’, for all T’ > T. Blowing down

this curve gives the curviey = 0(¢), x = 0}. This yields:

Theorem 2.2. Let T be a value for whiclC(T) is angle-parametrizable around = 0. Then, the unique formal
expansion solving the o.d.e. associate(lfns, atx = 0, Gevreyi/o of typeT’, foranyT’ > T.

3. Treating turning points

A similar technique permits to treat systems like (2). The blow up is not cylindrical, but we blow up the turning
point, using

(x,y,€)=W’x,u’y,u™é), u>0, (% 7,&eS? =0,

with m = p + 1. In the search for canards, we restrict the parameter spackto a regiorue —° € [—Ag, Ag]. TO
that end, we replace by A¢?. In the phase-directional rescaling chgirt= —1}, the vector field (2) yields (after
division byu?? /o):

—uée’,

mE‘H‘l, (4)
y=0€’A+ouP? f(—u®)y+0€°g(—u’,u’y,u™e)+0e’y.

U=
ou P°X: €=

1 AsetecCis angle-parametrizablaround O= C if §2 contains the image &f — r(6) &9 for some positive Q-periodicco-functionr.
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Write F(u) = u=?° f(—u?). (Then, F is analytic andF(0) = —1 < 0.) The new equation is of the same form
as (3), except that the invariant foliatiorud) = 0 in (3) is replaced by @™¢) = 0. We definer,, (1) :=
Sﬁ(u% fé‘ o™ ~1F (@) di), and draw conclusions similar to those in Theorem 2.1:

Theorem 3.1[2]. Consider the boundary cun®: {u = ug, y = s(€, A)}, with s analytic ate = 0 and withug € C
such thatR,, (ug) < 0. There exists a manifolV: y = @ (u, €, A) invariant under(4) and with X c W. It is
defined folg in a local sectorial neighbourhood af = 0 containing the positive real axis, and farin some local
sectorial neighbourhood of = 0 containing the segmef, ug].

Let T > 0 be such that-1/T = |ug|™ Ry, (ug). Suppose thaf,,(T) := {u € C: |[u|" Ry,(u) = —1/T} is
angle-parametrizable. Then the manifdidis Gevreyl/mo at u = 0 with typeT”’|€|"?,forall T’ > T.

As before, the invariant manifold® are continued in the chagt= 1, where there are no further singularities.
This means that the invariant manifold can be continued until its intersection with the{plan@} (or in blown up
coordinates, with the plane = 0} in the chart{e = 1}). Such intersection is a Gevrey+to curvey =6 (u, A),
uniform in A. As our interest goes to real dynamics, one chooses in particgilaR ™, so that the manifoldV is
a real manifold over the attracting real branchyofThe same construction can be repeated if one looks in the chart
{x =1}, where the repelling real branch pfis seen fou: > 0. One can now take two boundary cun&s (in the
chart{x = —1}, atup € R™) and X (in the chart{x = +1}, atug € R™), and ‘match’ both invariant manifolds in
the planglx = 0}, using an implicit function argument w.rA.. A Gevrey-version of the implicit function theorem
allows to find a curve in parameter spate- A(u), Gevrey-¥Ymo inu of typeT’ forall T’ > T

Theorem 3.2 [2]. Let T be a value for whictC,,(T) is angle-parametrizable around = 0. Then, the unique
formal control curvg(w.r.t. ¢/ with m = p + 1) along which canard solutions are found () is Gevreyl/mo
w.r.t. €/ of typeT’, for all T’ > T. All canard manifolds of(2) intersect{x = 0} in a curve that is smooth
w.rt. €1/™ which is formally Gevreyl/mo of typeT”, forall T’ > T.

Systems with canard solutions are systems exhibiting bifurcation delay: orbits tend to follow the repelling branch
of y for a while, instead of immediately diverting from it after passing the turning point. For vector feldfe
following question is interesting: doeg, exhibit bifurcation delay, and if so, what is the maximum delay? An
equivalent formulation of the question is the following: do¥s have canard solutions, and if so, what is the
maximum size of such a canard solution? In general, there is a direct relation between the Gevreydygrel of
the maximum size of complex ‘overstable’ solutions: one can think/df as the distance to the turning point
of the first obstruction in resummating formal series to analytic functions in sectors. This first obstruction will
limit the size of overstable solutions, but the obstruction may be complex. In that case, it is possible to find better
resummation methods iR (through analytic continuation of the Borel transforms). For a study of real canards,
the determination of the type hence no longer suffices to find the maximum canard: a more detailed analysis of
the location of obstructions iR is needed. Therefore, Theorem 3.2 is only a starting point for such an analysis.
Nevertheless, it already implies good results for important classes of systems (for examplef whenix?,

g polynomial in (2)). Interesting related results can also be found in [4], wifecanards’ are studied.
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