——_ COMPTES RENDUS

Available online at www.sciencedirect.com

SGIENCE@DIHEGT’

ELSEVIER C.R. Acad. Sci. Paris, Ser. | 340 (2005) 461-464

> MATHEMATIQUE

http://france.elsevier.com/direct/CRASS1/

Numerical Analysis

A dual finite element complex on the barycentric refinement
Annalisa Buffe?, Snorre H. Christiansén

@stituto di Matematica Applicata e Tecnologie Informatiche del CNR, Via Ferrata 1, 27100 Pavia, Italy
b CMA c/o Matematisk Institutt, PB 1053 Blindern, Universitetet i Oslo, NO-0316 Oslo, Norway

Received 15 November 2004; accepted 25 November 2004

Presented by Philippe G. Ciarlet

Abstract

A simplicial mesh on an oriented two-dimensional surface gives rise to a comledf finite element spaces centered
on divergence conforming Raviart—-Thomas vector fields and naturally isomorphic to the simplicial cochain complex. On the
barycentric refinement of such a mesh, we construct finite element spaces forming a cMpertered around curl con-
forming vector fields, naturally isomorphic to the simplicial chain complex on the original mesh and sueifthas in L2
duality with X?. In terms of differential forms this provides a finite element analogue of Hodge duBbityite this article:
A. Buffa, S.H. Christiansen, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
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Résumé

Un complexe dual d’éléments finis sur le raffinement barycentriqueUn maillage simplicial sur une surface orientée
bidimensionnelle donne lieu a un complex® d’espaces d'éléments finis centré sur I'espace de Raviart—-Thomas de champs
de vecteurs a divergence conforme et naturellement isomorphe au complexe des cochaines simpliciales. Sur le raffinemen
barycentrique d’un tel maillage, nous construisons des espaces d’éléments finis formant un cBfmlerieé sur des champs
de vecteurs a rotationnel conforme, naturellement isomorphe au complexe des chaines simpliciales sur le maillage de départ e
tel queY 2~ soit en dualité B avecX!. En termes de formes différentielles, on obtient un analogue de la dualité de Hodge pour
les éléments finiPour citer cet article: A. Buffa, S.H. Christiansen, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let I" be the boundary of a bounded domainRiA. We suppose thalt’ is piecewise affine. Thuf is a two-
dimensional orientable manifold. We chose the orientation"anduced by the outward pointing normal @n,
which we denote by:. In fact all the results of this Note are valid in the slightly more general setting of an
oriented piecewise linear manifold, but embedding iRfhmakes the presentation less technical and corresponds
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to the most important applications we have in mind, namely electromagnetic scattering problems [6]. For such
problems, in particular in the context of integral equations, one encounters the problem finding finite dimensional
spacesx® and Y of vector fields such thax® c Hgiv(I"), Y1 C Heun(I") and the 12 duality is non-degenerate

on X! x Y1, In this Note we letx! be the standard space of Raviart-Thomas vector fields and construct a new
adequate spacé! (it should be remarked that settiod = X! x n doesnot provide an adequate answer, see [5]),
guided by the use of differential complexes. It has applications to the preconditioning the electric field integral
equation, providing an alternative to [5] that will be detailed elsewhere, and provides new discretization spaces for
some of the formulations of impedance boundary conditions that can be found in e.g. [1].

2. Definitions

We equipI” with a simplicial mesh denoted,. Recall that a simplicial complex of is a set of finite subsets
(called simplexes) of”, such that¥s € 7, Vs’ C s, s’ € 7;,. For each integei denote by];f the subset of7;,
consisting ofi-dimensional simplexes (i.e. elements of cardinality 1). Fors € 7;, we denote bys| the convex
envelope of in R3, called the geometric realization of The elements dfh’ are called vertexes whéenr= 0, edges
wheni = 1 and triangles when= 2. We suppose that for each simplkexs| C I and that the union of geometric
realizations isl". Moreover we suppose thdj, is non-degenerate in the following sense: for ea@ﬂ;f, ls] is
indeedi-dimensional, and moreov&s, s’ € 7y, |s| N |s'| = |s N s']. ThenThi is empty fori > 2. The triangles of
T, are oriented by:, and for each edge an orientation is chosen. The oriented unit-norm tangent vector along an
edgee is denoted,.

On7;, we consider the lowest order finite-element commllég, X1t X,zl) based on Raviart-Thomas divergence
conforming vector fields (see [2] for details). It is defined by:

X/?:{ueHl(F): VtE?;lzuh;\EPl}, (1)
X} = {u € Ha(I): Vi € T2 ulyy € RTo), )
XE:{MGLZ(F)Z Vte?;,zulm €P0}~ (3)

These spaces satisfy coif ¢ X} and divx} ¢ X2, providing a complexx? — x} — Xx2. We denote by
Al = (Al) the standard basis of! and/’ = (1)) the usual degrees of freedom (d.o.f.), both indexed kyZ}'.
Explicitly 18 is evaluation at the vertex, I} is integration of the normal component along the ed,gandl,2 is
integration on the triangle We havdﬁ, ()L;') =8¢

The barycentric refinement @, is defined by dividing each triangkes Thz, into six triangles by drawing the
six edges joining the barycenter ofwith the vertexes of as well as the midpoints of its edges. The barycentric
refinement of7;, is denoted’,. In Fig. 1 the edges df;, are drawn in bold, whereas non-bold segments are edges
of 7, (all bold segments are also edgesZg). On 7, we consider the slightly different finite-element complex
(XQ, X}, X?) defined by:

Y,?:{ueHl(F): Vte?},’zulmepl}, “)
)?hlz{”echrl(F): er’];[z““tleRTOX”}’ ©)
X ={ueLlX(I): Vi € T;% uly € Po}. ©

These spaces satisfy gri c X! and curlX}! c X? so that we have a complex? — X! — X?2. Bases are
constructed for these spacesBhas for the previous spaces @pand denote(ﬂif;: seT) h.

The aim of this Note is to construct subspaggsc )N(;l such that on the one hand uality on Y x X,f*"
is non-degenerate and on the other hand they form a conﬂ;ﬂex» th — Yh2 (for the operators grad and curl
respectively). We define these spaces by the construction of a basis and then check that our goals are fulfilled.
For eachi € {0, 1,2} and each simplex e Thz", let uf; € 55;1 be the field attached to constructed as a linear
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Fig. 1. Left: A basis element for expressed in the basis &fC. Middle: A basis element for- expressed in the basis & (edges are

oriented away from the central one and given weight indicated at their origin). Right: A basis elemg}ltdxpressed in the basis thz (all
2N triangles in the support should have the same coefficig(2N)).

combination of the function! with the coefficients shown in Fig. 1 on the left foe 0, in the middle fori = 1,
and on the right for = 2. In each figure the shaded region is the support of the corresponding field. We then define
Y} by Y} =spariui: s € 27},

To construct degrees of freedom for these spaces we now fix some notations. For eachttléaﬁéldet t
denote its barycenter. For each edgeThl, let ¢’ be union of (the geometric realizations of) the two edgeg,of
joining the barycenter of to the barycenters of the two neighboring triangles. The tangent vectalonge’ is
oriented such that, - (t, x n) > 0. For each vertex Tho, denote by’ the union of (the geometric realizations
of) the triangles of7, containingv. We have thus defined certain geometric objettsn 7, attached to simplexes
s € T;,. We now define three familieM;; = (m;)sefhz_,- of d.o.f. by:

miius [ou, with [u=u@s)(=0); =[,u-tw(i=1;=[,ui=2). )
3. Properties

We first prove some rather algebraic properties. Straightforward checking gives:

Proposition 3.1. For eachi € {0,1, 2} and eachi-dimensional simplexes ¢ € Th’ we havemf;(u;') = 8. In
particular, for eachi the familyu’ = (1) indexed by € T,f*" is a basis forY;;, and a fieldu € Y;;, i=01,2is
uniquely determined the valueg () for s € T,12‘i.

Proposition 3.2.The family of functionsug: s € 7;,2) is a partition of unity.

Proposition 3.3.We havegrady? ¢ ¥} and curly} c ¥2. Moreover the matrix ofrad:¥? — ¥} in the ba-
sis u® — ul is the transpose of the matrix div: X} — X2 in the basisi® — 22, and similarly the matrix of
curl: Y} — Y2 in the basisu* — 112 is the transpose of the matrix ofirl: X? — X} in the basis\® — 1.

All these matrices are in fact incidence matrices, with entrigs-ih 0, 1} according to the relative orientation.

For eachi € {0, 1,2} we denote by/; the interpolation operator associated with the d.&tf. Explicitly 7;
associates with any sufficiently regular fieddscalar or vector according iy the element:, of Y,;' such that's €
ThZ*i m' (uy) = m' (u). Applying Stokes theorem on the geometric elemehtse associated with the simplexes
s € 7y, in order to define the d.o.f. gives:

Proposition 3.4.Let 2° c HY(I"), £21 ¢ Heun(I") and 222 c L2(I") be the subspaces consisting of piecewise
smooth fields. The interpolators satisfy the following commuting diagram
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g rad

QO Q l curl Q 2
I ®)
YO grad Yl curl Yhz

The Poincaré duality oX*® (or an elementary argument based on the Euler—Poincaré formula) gives:
Proposition 3.5.In the complexX’'®, the cohomology groups have the same dimension &$.in

We now turn to metric properties of the spade,fsand focus on norms relative to traces (see [3,4]). Pl
HY2(r), Y = H Y2y and Y2 = H-Y/2(I"). We suppose that we have a family of mesfigsndexed by the

curI
mesh-widthk and leth — 0. Recall that a familyZ;) of subspaces of a normed spatés called approximating
if Vu € Z limy,_oinf{|luy, —ull: u, € Z,} = 0. We suppose that the family of triangulations is quasiuniform. The

most basic result is:
Proposition 3.6.For eachi € {0, 1, 2}, the family(Y;;) is approximating iny”.

Various convergence orders can also be obtained but are more technical than for standard finite elements. We

will come back to this elsewhere. We now show that tRedualities onY;; X X,f*" are non-degenerate. PXif =

Hl/Z(F), Xl (;\]/-/2(1'*) X2 71/2(1'*).

Proposition 3.7.For eachi € {0, 1, 2}, there ish > 0 and C such that for allh < i we have

inf  sup f i

>1/C. 9)
ueX] yoyz- IellxiTollyz-

Finally we remark that the results of this Note can be expressed in a very natural way in terms of differential
forms. In this language the dualities we construct are Hodge dualities for finite element spaces. The construction
can also be extended to the case of surfaces with a boundary (where one looks for spaces dual to the standard finit
element spaces satisfying homogeneous boundary condition). Three (and higher) dimensional analogues are unde
investigation.
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