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Abstract

In this Note we propose a new method of proving the existence of solutions to−divA(x,∇u) � f , whenA(x,∇u) has
x-dependent maximal monotone graph. The idea is based on the theory of Young measures and on the method of co
compactness. Alternative approaches were proposed elsewhere. However, our method allows us to obtain also the s
vergence of approximate solutions.To cite this article: P. Gwiazda, A. Zatorska-Goldstein, C. R. Acad. Sci. Paris, Ser. I 340
(2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Existence par compacticité pour opérateurs maximaux monotone elliptiques. Dans cette Note nous proposons u
méthode nouvelle de démonstation de l’existence de solutions de−divA(x,∇u) � f , où A(x,∇u) a un graphe maximal
monotone dépendant dex. L’idée de cette méthode est d’utiliser la théorie des mésures de Young et la méthode de comp
par compensation. Une autre approche a été proposée ailleurs. Néanmoins, notre méthode permet d’obtenir la conver
des solutions approchées.Pour citer cet article : P. Gwiazda, A. Zatorska-Goldstein, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction and statement of the results

Let Ω be an open bounded subset ofR
m. Given a functionA = A(x, ξ) :Ω × R

m → 2R
m

, we consider the fol-
lowing elliptic differential inclusion in divergence form−divA(x,∇u) � f for the unknown functionu :Ω → R.
In the paper by Chiadò Piat, Dal Maso, Defrancheschi [4] a set of assumptions onA was stated, and the first pro
for such situations was achieved. The crucial point was defining the proper measurability ofA with respect tox.
Note that ifA is multi-valued, there are many possible choices.
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1631-073X/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Recently an entirely new approach was proposed by Francfort, Murat and Tartar [5]. They reformul
assumptions into a completely equivalent form, but omitting the use of multi-valued techniques. Our ai
propose a different method of proving the existence of solutions, with the same assumptions as in [4,5], r
only monotonicity by a strict monotonicity. It yields additional information about the strong convergence
approximate solutions. Contrary to the other two papers, our method follows the spirit of the compactness
of J.-L. Lions for variational-type operators (see [6], Chapter 2.6; Theorem 2.8 and [3], Lemma 5); howe
use Young measures and compensated compactness in a non standard setting. Let us now state the main

Proposition 1.1. Assume thatA = A(x, ξ) :Ω × R
m → 2R

m
is maximal strictly monotone inξ for a.e.x ∈ Ω and

A(x) ⊂ R
m × R

m is anx-dependent graph ofA(x, ·) for a.e.x ∈ Ω . Moreover, assume thatA(x) has following
properties:

(i) There exist1< p < ∞, m(x) � 0 in L1(Ω) andα > 0 such that for a.e.x in Ω and every(e, d) ∈ A(x),

−〈d|e〉 � m(x) − α
(|e|p + |d|p′)

.

(ii) For any closed subset C ofRm the set{(x, e) ∈ Ω × R
m: there existsd ∈ C such that(e, d) ∈ A(x)} is

measurable with respect to theσ -field generated byL(Rm) ⊗B(Rm).

Then for everyf ∈ W−1,p′
(Ω) there exists a pair(σ,u) such thatσ : Ω → R

m is measurable,u ∈ W
1,p

0 (Ω),

(σ (x),∇u(x)) ∈ A(x) for a.e.x ∈ Ω , and−divσ = f in D′(Ω).

Above and in the following,〈·‖·〉 denotes the scalar product inR
m. For brevity in this Note we prove the easi

case – when the graphA does not depend onx and we add a comment on general case.

2. The compactness method

The next theorem is a modification of the fundamental theorem on Young measures. We replace the fa
single distributed probabilistic measures (compare [1]) by general probabilistic measures, obtaining:

Theorem 2.1. Let Ω be an open bounded subset ofR
m. Assume that for everyx ∈ Ω there exists a sequenc

of probability measuresνj
x on R

N such that for everyj , the mappingνj :Ω → M(RN) is weak-∗ measurable.

Assumeν :Ω → M(RN) to be such thatνj ∗
⇀ ν in L∞

w (Ω,M(RN)).
If the sequenceνj satisfies the ‘tightness condition’,

lim
M→∞ sup

j

∣∣{x ∈ Ω: supp(νj
x ) \ B(0,M) = ∅}∣∣ → 0, (1)

then:

(i) |νx |M(RN ) = 1 a.e. inΩ ;
(ii) for every measurable subsetE ⊂ Ω and for every Carathéodory functionf such that

lim
R→∞ sup

j∈N

∫

E

∫

{λ∈RN : |f (x,λ)|>R}

∣∣f (x,λ)
∣∣dν

j
x (λ)dx = 0, (2)

we have:∫

RN

f (x,λ)dν
j
x (λ) ⇀

∫

RN

f (x,λ)dνx(λ) in L1(E).
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Throughout this Note byφε we will denote the functionφε(ξ) = 1
εm φ(

ξ
ε
), whereε > 0 andφ ∈ C∞

0 is a
nonnegative function such that

∫
Rm φ(ξ)dξ = 1.

Proof of Proposition 1.1 in the case A independent on x. Let us first observe that ifA satisfies the assumption
of Proposition 1.1 and does not depend onx, then there exists a selectiona from A such that:a is Borel measurable
a ∈ L∞

loc(R
m,R

m) and is strictly monotone, i.e. for everyξ1, ξ2 ∈ R
m, ξ1 = ξ2〈

a(ξ1) − a(ξ2) | ξ1 − ξ2
〉
> 0. (3)

Moreover, for allξ ∈ R
m, the following growth and coercivity conditions are satisfied:∣∣a(ξ)

∣∣ � c1
(
1+ |ξ |p−1), 〈

a(ξ) | ξ 〉
� c2|ξ |p − c3, (4)

wherec1, c2, c3 are strictly positive. Define a functionaε(ξ) = (a ∗ φε)(ξ). The regularization preserves the m
notonicity condition (3). The growth and coercivity conditions (4) are preserved up to a possible choice of t
constantsc′

1, c′
2 andc′

3 independent ofε for |ε| � 1. Thus, one can show that there exists a weak solutionuε to
the problem−divaε(∇uε) = f , uε|∂Ω = 0. The energy estimates and the conditions imposed ona yield also a
uniform bound on theW1,p

0 norm of solutions. Therefore, up to subsequences, it holds:∇uε ⇀ ∇u in Lp(Ω,R
m),

aε(∇uε) ⇀ σ in Lp′
(Ω,R

m), whereσ is a measurable function. The div–curl lemma of the theory of compen
compactness provides〈

aε(∇uε) | ∇uε
〉 → 〈σ | ∇u〉 in D′(Ω). (5)

We have:

aε
(∇uε(x)

) =
∫

Rm

a(ξ)φε
(∇uε(x) − ξ

)
dξ =

∫

Rm

a(ξ)dµε
x(ξ),

whereµε
x is a nonnegative probability measure, absolutely continuous with respect to the Lebesgue m

with densityφε(∇uε(x) − (·)). Define a functiong :Rm → R
m by g(ξ) = a(ξ) + ξ . The monotonicity condition

(3) implies thatg is injective and the functiong−1 : img → R
m is Lipschitz continuous. Moreovera(g−1(·)) is

continuous on img. Define a measureνε
x ∈M(img) by:

νε
x(S) = µε

x

(
g−1(S)

)
for every Borel setS ⊂ img. (6)

For everyε the measureνε
x is a probability measure on img and the mappingνε :Ω → M(img) is weak-∗

measurable, as it follows from the measurability conditions ofg. The Banach–Alaoglu Theorem yields that the

exists a weak-∗ measurable mappingν ∈ L∞
w (Ω,M(Rm)) such thatνε ∗

⇀ ν and‖νx‖M(Rm) � 1. Then testing the
weak-∗ convergence with a suitable test function, we obtain:

suppνx ⊂ K, whereK = img.

Note that|γ ε|L1 � C, whereγ ε(x) := maxξ∈supp(µε
x) |g(ξ)| = maxλ∈suppνε

x
|λ|. This implies that the sequence

mappingsνε satisfies the tightness condition (1). Then, Theorem 2.1 implies that the measureνx is a probability
measure onK for a.e.x ∈ Ω . It is easy to check that

∇uε(x) =
∫

Rm

ξ dµε
x(ξ) + O(ε) and

〈
aε

(∇uε(x)
) ∣∣ ∇uε(x)

〉 =
∫

Rm

〈
a(ξ) | ξ 〉

dµε
x(ξ) + O(ε).

Therefore we get:

aε
(∇uε(x)

) =
∫

img

a
(
g−1(λ)

)
dνε

x(λ), ∇uε(x) =
∫

img

g−1(λ)dνε
x(λ) + O(ε),

〈
aε

(∇uε(x)
) ∣∣ ∇uε(x)

〉 =
∫ 〈

a
(
g−1(λ)

) ∣∣ g−1(λ)
〉
dνε

x(λ) + O(ε).

(7)
img
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We may interpret the measuresνε
x as measures defined onR

m. The functionsg−1 anda(g−1) can be continuously
extended ontoK . We will denote these extensions byg̃−1 and ã. It follows from (7), (5) and the second part
Theorem 2.1, that

σ(x) = ∫
K

ã(λ)dνx(λ), ∇u(x) = ∫
K

g̃−1(λ)dνx(λ),〈
σ(x) | ∇u(x)

〉 = ∫
K

〈
ã(λ) | g̃−1(λ)

〉
dνx(λ) + β,

(8)

whereβ is a nonnegative Radon measure describing concentrations, cf. [2].
Maximality of A implies that(g̃−1(λ), ã(λ)) ∈ A. Moreover, the strict monotonicity of the graph togeth

with (8) ensure that
∫
K

〈ã(λ) − a(∇u(x)) | g̃−1(λ) − ∇u(x)〉dνx(λ) = 0 which implies g̃−1(λ) = ∇u(x) for
νx -a.e.λ and therefore(∇u(x), ã(λ)) ∈ A for νx -a.e. λ. Since maximal monotone operators are convex-val
hence(∇u(x), σ (x)) ∈ A, whereσ is given by (8). Moreover,µx (the weak-∗ limit of the sequence of the mea
suresµε

x ) is a Dirac measure onRm for a.e.x in Ω . This is provided by{∇u(x)} = g̃−1(suppνx) = suppµx for
a.a.x ∈ Ω . It follows that∇uε → ∇u a.e. inΩ . The proof is complete. �
Idea of the proof in the case A = A(x,∇u). To avoid problems with measurability with respect tox we use the
method introduced in [5]. There exists a Carathéodory functionϕ :Ω ×R

m → R
m such thatϕ(x, ·) is a contraction

for a.e.x in Ω and

(ξ, η) ∈ A(x) ⇐⇒ η − ξ = ϕ(x,η + ξ). (9)

Fix x ∈ Ω and define functions:

ãx(λ) = 1

2

(
λ + ϕ(x,λ)

)
, g̃−1

x (λ) = 1

2

(
λ − ϕ(x,λ)

)
. (10)

These are continuous functions onR
m and for everyλ ∈ R

m the mappingsx �→ ãx(λ) andx �→ g̃−1
x (λ) are mea-

surable. Moreover, for a.e.x in Ω and for everyλ ∈ Kx : ãx(λ) = a(x, g−1
x (λ)) andg̃−1

x (λ) = g−1
x (λ) and therefore

for everyλ ∈ Kx we have(g̃−1
x (λ), ãx(λ)) ∈A(x).

As in the previous case we regularize the functiona by a convolution inξ . The measurability and continuit
of the functionsãx and g̃−1

x allow us to avoid problems caused by the fact that the measuresνx have supports
dependent onx. �
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