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Abstract

The aim of this Note is to present an optimal stepwise method for estimating an integral of a time series from observations
at appropriately designed sampling points. Optimal linear estimators along with sampling points are constructed via a stepwise
procedure. At each stage, one term is added to the existing estimator with the addition of one new sample, and previous observa-
tions and calculations are preserved. The stepwise method is also considered when simple linear nonparametric estimators ar
used. Asymptotically, an optimal one-step ahead sampling point is derived by maximizing an objective function that depends
on the singularity of the process at the previous poifitite this article: K. Benhenni, Y. Su, C. R. Acad. Sci. Paris, Ser. |
340 (2005).
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Résumé

Estimation de moyennes aléatoires par une procédure d’échantillonnage pas a pas. Dans cette Note, on considére
I'estimation de l'intégrale d’un processus stochastique a partir d’observations engendrées par une procédure optimale d’échan-
tillonnage pas a pas. A travers cette procédure on construit des estimateurs linéaires optimaux ainsi que les points d’observations
A chaque étape de la procédure, I'estimateur actuel est modifié par I'addition d’un terme engendré par le nouveau point et permet
ainsi de préserver les observations et les calculs précédents. On applique aussi cette procédure d’échantillonnage pour construil
des estimateurs linéaires nonparamétriques. On montre que le point d’échantillonnage optimal asymptotique de I'étape suivante
de la procédure est celui qui maximise une fonction objective qui dépend de la singularité du processus a travers sa fonction
d’autocovariance aux points précédeaur citer cet article: K. Benhenni, Y. Su, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
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1. Introduction

The problem of interest is to estimate an integral of a time series from observations at a finite number of ap-
propriately designed sampling points. The performance of an estimator is measured by the mean squared error.
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Optimal and simple linear estimators are considered and sampling points are so chosen to minimize the mean
squared error. In view of the literature, deterministic sampling schemes can be classified into single-stage methods
and stepwise methods. Single-stage methods find a fixed number of sampling points simultaneously while stepwise
methods select one sampling point at a time. Stepwise procedures are desirable in practice since previous observe
tions and calculations are preserved. At each step it is only necessary to add one term to the existing estimator if
one wishes to use one additional sample.

Asymptotically optimal single-stage sampling designs are considered by many authors for different statistical
problems. In particular, the estimation of regression coefficients is studied in Sacks and Ylvisaker [5]. The esti-
mation of integrals of time series is studied in Benhenni and Cambanis [2] for those with zero or higher order
quadratic mean derivatives and in Stein [6] and Pitt, Robeva and Wang [4], Benhenni [1], Istas and Laredo [3] for
those with derivatives up to an arbitrary order (not necessarily an integer).

The aim of this Note is to introduce an optimal stepwise method for the estimation of an integral of a time
series. The problem of estimating an integral of time series by use of both an optimal linear estimator and a
simple linear estimator is introduced in Section 2. Optimal linear estimators require the precise knowledge of
the covariance function while simple linear estimators depend only on observations and corresponding sampling
points. In Section 3, an optimal stepwise method for estimating an integral of a time series is presented. In the
proposed stepwise approach, optimal linear estimators along with sampling points are determined stepwisely to
minimize the mean squared error. For a time series with no quadratic mean derivative, such as time series with
Wiener, Gauss—Markov covariance, it turns out that asymptotically, an optimal one-step ahead sampling point is
one of the midpoints of intervals, determined by the currently existing sampling points. In Section 4, we show
that asymptotically, the rule of determining optimal stepwise sampling points for simple linear nonparametric
estimators is essentially similar to that for optimal linear estimators.

2. Estimation of an integral of time series

Let X (1), t € [0,1] be a second order time series with zero mdaki(r) = 0 and covariance function
EX(@)X(s) = R(s,t). Consider the integral (X) = f01X(t)dt of X over the bounded intervdD, 1]. Define
a function f on[0,1] by f(t) = EX(t)I(X) = fOlR(s,t) ds, ¢t € [0, 1] and denote its integration d©, 1] by
02 = folf(t)dt = [OlfolR(s, 1)dsdt = EI%(X). The functionf(¢) plays an essential role in our discussion and
the quantityo 2 represents the total variation of the integkéX).

Here, we want to estimate the integvalX) from observations ok atn sample points,, = {#;}7_; C [0, 1]
using a linear estimatat, (X) =Y\, ¢; X (1) = C, X, , whereX), = (X (t1), ..., X (t,)) are observations of at
T, andCj, = (c1, ..., ¢,) are coefficients to be selected. The mean squared error (MSE) of the estiméXoris

MSE(C,/Ty) = E(Ln(X) — (X)) = 02— 2C}, fyy + C}RuC,

wheref,; = (f(r1), ..., f(t,)) are the values of atT, andR, = (R(#;, 1;))axn iS the variance—covariance matrix
of X,,. The inverse oR,, is assumed to exist for eveny It is desired to choose the coefficiedts and the sampling
pointsT, in such a way that the resulting MSE is as close to zero as possible.

For a fixed sampling desigh,, optimal coefficient<,, minimize MSKEC,/T,) over all possible coefficients,
and areC, = f/R; L. The optimal linear estimator and its MSE are

L,(X)=fIR;1X,,  MSKEC,/T,)=0?— fIR;1f,,

respectively. Clearly, fof.,(X), a sampling desigf;, that maximizesf, R; 1 f, minimizesMSEC,, T,).
The optimal linear estimator requires the complete knowledge of covari&nte bypass this constraint, we
construct a simple linear estimator that depends only on the observations at the sampling points. Without loss of

generality, assume € 1 < --- < 1, < 1. By applying the trapezoidal rule for integral approximation in each of
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the intervals(s;, t;+1), i =1,...,n — 1 and using the rectangular rule in the two end inter{@ls;) and(z,, 1],
a simple linear estimator is obtained as follows

n—1
Ly(X)=1X (1) + Z(ti+1 —i)[ X)) + X (ti11)]/24+ A= 1) X (1).
i=1
The simple linear estimatdt, (X) is of the form:L,(X) = C, X,, whereC), = (¢1, ..., ¢,) With ¢1 = (t1 + 12)/2,
ci=(tit1—ti—1)/2,i=2,...,n—1andc, =2 —1t,-1—t,)/2.

3. Optimal stepwise sampling designsfor optimal linear estimators

The stepwise sampling method selects one sampling point at a time. The observatiof at théh sampling

point explains the largest portion of variation bfX) unexplained by observations at the precedingampling

points. This process continues until no significant improvement on the explained variation from new points occurs.
In general, if the firsa sampling points?, ..., 77 have been selected, tie + 1)th sampling point;_ ; is

so chosen that the marginal increase of variation due to the obser\)a(dppl) is maximized among alK (),

t ¢ {t’}'_,. The marginal increase of variation due to the observaXion 1) of X, given thatX (¢7), ..., X(t;)

are already obtained, is

_ 2 _
Atnsr | T) = [ £ tnrd) — FLRy 10 (taz )]/ [RUns1, tard) — 1 tas D Ry 1 (t010)]
where f = (f(t])..... ), Ru = (Rt} 17))nxn @NAry (tn41) = (R(1, tn41), - .., R(tn, 1a41))- Thenzy  is &
maximizer ofc?(,41 | T,”), namely,

A0 1T = sup A(tys1| TY).
tn+l¢T);7

The corresponding mean squared errof. ¢k | T ) is

MSE(C, | T,q) = 0% = EL?(X | T)) = 0% = [P(]) + (5 1) + -+ (17,4 1 T37) .

Consider the class of time series with no quadratic mean derivative. The covaRanae, however, satisfies
the following assumption:

Assumption 1. R(u, v) is assumed to have continuous mixed partial derivatives up to order two off the diagonal
u # v in the unit square, and continuous limits for its first order derivative at the diagogaal from above

and below, denoted bR®D (i, u+) = lim,_,,+09 R(u, v)/dv. The jump function ofR®D along the diagonal,

a(u) = ROV (u, u—)— ROYu, u+), is assumed to be continuous and not identical to zero. In addition, we require
R©2(y, ) to belong to the reproducing kernel Hilbert space spannel foy every 0< u < 1.

For the Wiener covariancR(s, t) = min(s, t), the jump function(s) = 1 andR@? (¢, -) = 0. For the Gauss—
Markov covarianceR (s, 1) = exp(— | s — ¢ |), a(r) = 2 andR®2 (¢, ) = R(z, -). A class of covariance functions
with nonconstant jump functions is easy to give.

Specifically, suppose thal, = {1;}7_; in [0, 1] is a currently operating set of sampling points. Denote the
ordereds; by 0< s1 < --- < s, < 1. The precise stepwise method fir’tgﬂsﬁl by maximizing the exact(s | T})
in [0, 1]. Here we find an + 1)th sampling point by maximizing asymptotic expressions%f | 7;,) as stated in
the following result.

Theorem 3.1. Consider the problem of estimatingX) by the optimal linear estimatakt (X | 7,,..1), wheret, 1
is a sampling point at one-step ahead. For € [0, 1], 1 # u, let

At |u)y=[f() — R, u) f ) /R, )]’ /[R(t, 1) — R*(t, u)/R(u, )]
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Denote the ordered by s;, then under Assumptiohy an asymptotic optimal sampling point at one-step ahead,
denoted by,j’+1, is a maximizer of2(¢ | s1) in 7 € [0, s1), or one of the midpointSsi + sx4+1)/2, k=1,...,n —1,

or a maximizer of2(z | s,) in (s,, 11; .1 corresponds to the largest value among the local maximuwA(©f s1)

in [0, s1), a(sx) (sks1 — sx)3/16,k =1, ..., n — 1 and the local maximum @£(z | s,) in (s,, 1]. In addition

lim 20,1 | T /Py, | T) =1.

Theorem 3.1 says that asymptotically, an optimal sampling pgintat next step is one of the midpoints of
intervals determined bi;}7_, and moreover; , has the same performance as an exact optimal pint

4. Optimal stepwise sampling designs for ssmple nonparametric linear estimators

Given a set of previously determined sampling poinhts= {#;}?_,, we try to find the next optimal point,; 1
when the simple linear estimatay, (X) is used for estimating the integra{ X).

Denote the ordered sample poiffis by 0< s1 < --- <5, < 1 and writed; = s;j+1 — s;, i =0, ..., n with
50 =0, 5,41 = 1. The simple nonparametric linear estimaiaiX | 7,,1) is constructed stepwisely according to
whethert, 11 € [0, s1), (sk,sx+1), k=1,...,n—1, or (s,, 1].

The following result gives asymptotically the optimal stepwise sampling points for the class of time series with
no quadratic mean derivatives when simple linear estimators are used. The corresponding asymptotic MSE is also
obtained.

Theorem 4.1. Consider the problem of estimatidgX) by the simple linear estimatdt(X | 7;,.-1). Then under
Assumptiord, an asymptotic optimal one-step forward sampling pefn is one of the pointss1/3 in [0, s1),

(sk + Sg+1)/2In (s, k1), k=1,...,n—1and (s, +2)/3in (s,, 1]. It corresponds to the largest value among
(251/3)3c(s1) = qo, (k1 — sx)3c(sx)/16=gqr, k=1,...,n — 1, and[2(1 — s5,,) /313« (s,) = ¢». Moreover, the
corresponding MSE is

n—1
MSE(Coi1 | Th, fi41) ~ s7a(s1)/3+ ) er(si)d/12+ (L= su)°e(s,)/3 — max gy
i=1 SR
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