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Abstract

The complex quadratic fornd Pz, wherez is a fixed vector irC" andz’ is its transpose, an# is any permutation matrix,
is shown to be a convex combination of the quadratic farf#®s z, where P, denotes the symmetric permutation matrices. We
deduce that the optimal probability density associated to the chiral index of a sample from a bivariate distribution is symmetric.
This result is used to locate the upper bound of the chiral index of any bivariate distribution in the ifterdabr, 1 — 1/27].
To citethisarticle: D. Coppersmith, M. Petitjean, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
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Résumé

A propos de la densité optimale associée & I’ indice chiral d’ un échantillon d’une distribution bivariée. Nous montrons
que la forme quadratique complex&Pz, ol z est un vecteur donné da¥ et 7’ est son transposé, €t est une matrice
de permutation, est une combinaison convexe des formes quadratidyes ol les P, sont des matrices de permutation
symétriques. On en déduit que la densité de probabilité optimale associée a I'indice chiral d’'un échantillon d’une distribution
bivariée est symétrique. Ce résultat est utilisé pour localiser la borne supérieure de I'indice chiral d’'une distribution bivariée
guelconque dans l'intervalld — 1/, 1 — 1/2x]. Pour citer cet article: D. Coppersmith, M. Petitjean, C. R. Acad. Sci. Paris,
Ser. | 340 (2005).
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Version francaise abr égée

L'indice chiral x d’une distribution multivariée est défini a partir de la distance de Wasserstein [5] entre cette
distribution et son image par tranformation orthogonale de déterminantette distance étant minimisée pour
toutes les rotations et translations de I'image, et normalisée & I'inertie [2].

L'indice chiral d'un échantillon de taille d’'une distribution bivariée d’inerti&, s’exprime dans le plan com-
plexe a I'aide de la forme quadratique compleXBz, dans laquelle est un vecteur complexeracomposantes,

7/ est son transposé non conjuglé= ||z||2/n, et P est une matrice de permutation égale fis la matrice des
probabilités conjointes associée a la distance de Wasserstein :

x=1-— [TI%)(Z/PZ)]/HT.

Dans une premiére partie, nous montrons qu'il existe toujours une permutation optimale symétrique.

Dans une seconde partie, nous utilisons ce résultat pour localiser la borne supérjedemdée plan complexe.
Nous exhibons une famille de distributions dont I'indice chiral est arbitrairement proche-dg/st, puis nous
obtenons un majorant égal &-11/2r .

L'extension aux distributions bivariées quelconques (d'inertie finie et non nulle) est faite via un théoreme de
convergence de la littérature.

1. Introduction

The chiral indexy of a finite variancei-variate probability distributiorP is the Wasserstein distance [5] be-
tween the distributiof® and its inverted imag®, minimized for all rotations and translations®f and normalized
to the inertia ofP [2]. It takes values ovelO, 1]. It is a skewness measure offering various applications in com-
puter sciences [3]. In the case of a sample of sizthe optimal joint density between aftland P is known to
exist [5]. The matrix associated to this optimal density is shown t@le) times a permutation matrix [2,4]. In
the univariate case, this permutation matrix is symmetric [1]. We extend the result in this Note to the bivariate case:
the optimal joint density is symmetric. The upper bound of the chiral indexdefariate distribution is unknown,
except in the univariate case, for which it i&21]2]. In the bivariate case, the symmetry of the optimal joint density
of a sample is used to locate the upper boundir 1/, 1 — 1/27].

2. Symmetry of the optimal permutation
We first need to establish two theorems in the complex plane. We fix a complex yeetat, z2, . . ., z,) €C".
Given a permutation onn indices{1,2, ..., n}, define the quadratic formf Prz = 3|1 zj20(j), Where P, is
the permutation matrix associateddto "
Theorem 2.1. For any permutatiorr, the complex number P, z is in the convex hull of the sét' P, z: P, = P.}.
R () denoting the real part of a complex number, this following lemma will be crucial:
Lemma 2.2. If T is ann-cycle, then there is a symmetric permutatiosatisfyingh (z' P,z) < R(z' P z).
Proof of Lemma 2.2. Lett =(1,2,3,...,n). Whenn € {1, 2} the result is immediater itself is a symmetric
permutation. When is even, define two permutations (as product§ disjoint 2-cycles)u = (1, 2)(3,4) - - (n —

1,n),andB = (2,3)(4,5)--- (n, 1), and compute that P,z = [z’ P,z + 2’ Pgz]/2. S0z’ P;z is a convex combina-
tion of z' P,z andz’ Pgz, whence miih(z' Pyz), R(z' Ppz)} < R (z' Prz).
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We are left with the case whereis odd,n > 3. Consider the following 2 permutations:

aj =(NU+Lj+9G+3.j+4---(-2/-D

. . o . : . . . 1<j<n.
Bi=0G-Lj+D(NDG+2j+)G+4j+9---(—-3,j-2

We computezr’ Py;z+2' Pa; 12 — 27 Prz = zf + Z?+1 —2zjzj+1 = (zj+1—2,), where we are considering the
indices modulaz, so that ifj = n thenz; 11 = z1.

' Py;z+7 Pgz— 27 Prz= 2zf +2zj 1zj41— 225125 — 22j2j41=—2j+1— 2;)(zj — 2j-1)-

Now suppose the lemma is false, so that forjam(z’Pa_/z) > N(Z' Pr2) and?)’{(z/Pﬂjz) > N(z' P;z). Then for
all j, NR(zj+1 — Zj)z] >0 and?)i[—2(zj+1 —zj)(zj —zj-1] > 0.

Fix j. Defineb = zj41 — zj, ¢ = z; — zj—1. We have just seen thait(h?) > 0 anddi(c?) > 0 and¥(bc) < 0 (so
that ) (b?) # 0 andi(c?) % 0 andi(bc) # 0). Observe also thati(b)c — R (c)b) is pure imaginary, so its square
is real and nonpositivel (b)2c2 4+ R(c)2b% — 2R (b)N(c)be < 0. Taking the real parts of all terms and rearranging,
2R(D)R ()R (be) = R(D)ZR(2) +R(e)2R(H?) > 0, and fromi (be) < 0 we concludét (b)R(c) < 0. So the sign of
N(b) =N(zj+1—2z;) and the sign ofi(c) = R(z; —z;_1) are opposite. Ag cycles around 12, ..., n, 1, the signs
of fi(z;4+1—z;) alternate. Buk is odd, so this alternation is impossible. The contradiction proves Lemma 2.2.

Lemma 2.3. If T is ann-cycle, thert’ P,z is in the convex hull of the sét' P,z: P, = P.}.

Proof of Lemma 2.3. Suppose the conclusion is false. Then there is aditteoughz’ P, z in the complex plane,
with all {z'P,z: o = o1} lying on one side of the line. I has directiond, we haveh[z' P,z ™/2-9] >
N[z Prz€/2=0] for all o with o = o~1. Now setw = z€@/2-9)/2 so thatw' P,w = €™/2-9;'p 7, and ap-
ply Lemma2.2. O

Proof of Theorem 2.1. Express an arbitrary permutatienas a product of disjoint cycles;; apply the proof of
Lemma 2.3 to each cycle.

Then Theorem 2.4 is deduced immediately from Theorem 2.1
Theorem 2.4. The modulus of Pz is maximized by a symmetric permutation maPix

It is pointed out that non symmetric permutations may be optimal (e.g. whes several identical elements).

3. Application to the chiral index

As mentioned in the introduction, the chiral indgxis a parameter measuring the degree of asymmetry of a
multivariate distributior® having a finite and non null inerti&. It takes values in the interv®, 1]. It is null if
and only if the distribution is identical to any of its imagégyenerated by the composition of a translation and an
orthogonal transformation with determinant.

Here we need to locate the upper boung dbr bivariate distributions, and provide informations on the extreme
chirality distributions. The results hereafter are obtained via complex analysis techniques applied to samples of
bivariate distributions, rather than via probability calculations. The extension to parent distributions will be made
with a published convergence theorem.

We setz = x +iy andX = [x|y], x andy being fixed vectors ilR?, so thatz’ Pz| = A1 — A2, Wherex; andx,
are the eigenvalues d;f’(PJFTP/)X.
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The chiral indexy is computed at null expectation from Eqgs. (6) and (7) in [1]. For a sample of a bivariate
distribution? with inertiaT = ||z||2/n and|z||2 = x'x + y'y, it is known [1] to be:

y=1— [Tpa})(kl—)\z)]/nT. @)

The matrix associated to the joint density betw@&eandP is [P/n], and the minimized Wasserstein distance
betweerP andP is T x [2].
Thus Theorem 3.1 is deduced immediately from Theorem 2.4:

Theorem 3.1. The optimal joint density matrikP/n] of the finite discrete bivariate distributior8 and P is
symmetric.

We consider now the more general situation wherertlpoints are partitioned into groups of colors [1,2,4].
Permutations involving cycles over two groups are no more considered, and the optimal permutation is taken over
a subset of the! permutations. Obviously, Theorems 2.1 and 2.4 stand again, and the optimal joint density matrix
is still symmetric. Colors are not further considered in this Note.

4. Localization of the upper bound of the chiral index: part 1

We exhibit here a family of centered sets for which the ratio m}alx’le/Hzllz is arbitrarily close to 1.
‘Centering’ means working at null expectation. It means herelthat 0, wherel is a vector inC" each of whose
elements is 1. It is also recalled that the ratio is insensitive to an arbitrary planar rotation (phase).

Lemma 4.1. The upper bound of the chiral index of a bivariate sample cannot be smalledthaty .

Proof of Lemma 4.1. Fix ¢ > 0. Choose an even integer> 1/¢. Let w = €27/(2" be a complex root of unity,
so thatw?" = 1. Select an integer > m*/¢2 and an even integér > r”~1/¢. The complex vector hasn =
A+r+r2+---4+rm 14 2k) elements as follows. There ane+ 3 blocks labelledj =0, ...,m + 2, each
consisting of identical elements. Fgr< m, block j hasr/ identical elements with value//r//2. Let S denote
the sum of these elements:= 3"/=7' "' w/ri/2. Block m containsk identical elements with value S/k; block
m + 1 containsk/2 elements with valueS/ k; and blockm + 2 containsk /2 elements with value-i S/ k. The sum
of elements ot is zero: blockm cancels the firsiz blocks, and blocke: + 1, m + 2 cancel each other. Also, the
sum of squares of elements pfs zero: the squares of elements in the fitsblocks add toZ”’ 1 w2 =0, while
blocksm + 1 andm + 2 cancel blockn. One can comput€'x = y'y =m/2+ O(¢) andx’y = 0.

We know from Theorem 2.4 that the optimal permutat®rmairs the elements af, some being paired with
themselves wher® contains 1-cycles. LeB; be the number of elements paired within the blgckVe sets; =
B;/r/, sothat0< g; < 1for j=0,...,m — 1. The contribution of these elementst®z is f;w?.

One can see that the contribution4#@Pz of the elements paired between two different blogksand j» is
O(l/r(l/z)Ul‘fZ') = O(e/m?) when ji <m and j» < m, so that then? — m off-diagonal blocks contribute a total
of O(s) to z Pz The contribution of the elements paired between the blgcksn and blocksn, m +1,m + 2
is O(r™—1( = 1) ‘i‘) = O(e). The contribution of the elements paired within the last three block$l<i$@)2) =
O(e). All these contributions sum to at most4), except for the diagonal ternys = j, < m.

We look for lim,— o, max p; Iz’ Pz|/|1z|I%. Whenm is arbitrarily large, we look for the: valuesp; maximizing:

|12 Bj0¥ + O(e)|/(m + O(e)).

The complex numbepy = Z’ = 1/3] 2/ is the sum ofm terms having all modulus in the intervgd, 1].
Neglecting the term @), we can see that only the terms offering a difference of pltasach that cog) >
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B;/2ly| will contribute to the modulus of . Since|y| tends to infinity whenn tends to infinity, only the terms
having a difference of phase withjr- /2, +7 /2] with y will contribute to the modulus of .

For these latter we s@t; = 1, and we seB; = 0 elsewhere. Working with a free arbitrary phase, we have:
2m-1/2 _ 1= o™ 2

1—0?  (—iw)(2sin27/2m))’

y=1l+o*+o*+ - 4o

Its modulus isy| = +0(L) = 4+ O(e). Therefore:

1 —
sin(z/m) —

QA+ 3|3

lim {max|z/Pz|/||z||2} =
m—~oo U {P}

Our family of sets has a chiral index arbitrarily close to41/x, thus Lemma 4.1 is proved.

5. Localization of the upper bound of the chiral index: part 2

We first show that no set can have the ratio m@}cz’Pz|/||z||2 smaller than 1z under the additional condition
that at least half of the elements;; are null. The centering condition is not set here.

Lemma 5.1. For any complex vector having at least half of its elements null, we have the following ineqguality
[maxpy |2’ Pzl/1z]12] = 1/7.

Proof of Lemma 5.1. We consider an arbitrary phageand its associated permutatiép such that; is paired
with itself whensi(z2 €) > 0 andz; is paired with a null element whefi(z3 €) < 0. Settingz? = r; €%/, we

have &7/ Pyz =3 r; €+ and sincdz Pyz| > [%(€%7 Pyz)|, we have:

|7/ Pyz| o > rjmaxo0, cog6 + ¢;)}
lzl2 = 27 '
The numerator of the right member of the inequality above is a continuous functi&mmatximized for some

unknown value of), where6/2 is the phase of the free rotation. Although the maximum is difficult to locate, it
cannot be smaller than the mean value of the function. This mean value is:

0

—2n
/ > rimax{0,cos6 + ¢,)} do.
o

1
27
0

Permuting the two summation operators, we are left with a finite sum of integrals, each of them being equal to 2
The mean value of the function is)2 r; /2, thus proving Lemma 5.1. O

The condition ‘at least half of the elements are null’ is asymptotically satisfied for the sets considered in the
previous section. Now we remove this condition, and we set instead the centering coliditof.

Lemma 5.2. The chiral index of any bivariate sample cannot be greater thanl/2x.

Proof of Lemma 5.2. We know that there existssuch that " r; max0, cos0 + ¢;)} > (1/7) Y _r;.
Let k£ be the number of elements such thaif)i(z?) < 0. We defineg; as thek-dimensional vector such that

Si(zﬁ) < 0, andz,_; as the ¢ — k)-dimensional vector such thait(zf) > 0, such thatl’zy + 1'z,—x = 0. We set
the arbitrary phase such that= 0, without loss of generalityy - max{0, Sf(zf)} > 1/m) ) Iz; .
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Then we build the matrixn W, ], such thafW,] is a joint density matrix andlz W] is a doubly stochastic
matrix, as follows:

0o 1.7
in which | is the identity matrix of size — k and the vector& have the appropriate size (eithgror n — k, or n).
Building z’ = [z],_,|z;], we havez' [n W]z = n"ﬂ(z;szn_k), and since the real part cannot exceed the modulus,
we get|z'[nWi]z| > ﬁ(%)Z 1z, 1.
The permutation matrices are the extreme points of the closed bounded convex set of bistochastic matrices.
Then, maxpy |z Pz| > |2 [n W4 ]z| and:

n 1
max|z Pz| > —( = 2 2
e pel n+k<ﬂ>”Z” )

and since < n: max p) |z’ Pz|/|1z|I? > 1/2m, which proves Lemma 5.2.
A slight improvement is obtained when the conditign = 0 is added. We build the doubly stochastic matrix
[nW_]

Then:z/[nW_]z = m(zl’(zk). Sincez, zk = —z,,_,2n—k, We are led to the same inequalities as above, except
that the facton/(n + k) is now replaced byt/(n + (n — k)):

n 1
max|z Pz| > ——( = 2, 3
nax|z’ Pzl n+(n_k)<n>llzll ®)

Depending which ok or (n — k) is the smaller, the largest of the ratiog(n + k) andn/(n + (n — k)) cannot
be smaller than 23, and thus: may,; |z’ Pz|/|1z||? > 2/3n, corresponding to a chiral index upper bounded by
1-2/3x.

The conditionz’z = 0, i.e.x’x = y’y andx’y = 0, means that the variance matrix of the centeredgef is
proportional to the identity matrix. This condition is asymptotically satisfied by the sets described in the previous
section.

From Lemmas 4.1 and 5.2, the upper bound of the chiral index of any bivariate sample is lying somewhere in
the intervalll — 1/7, 1 — 1/2x]. From the convergence theorem in section 1V in [2], we deduce Theorem 5.3:

Theorem 5.3. The upper bound of the chiral index of a bivariate distribution lies in the intgdvall/7, 1—1/27].

The family of bivariate distributions described in Section 4 are conjectured to be asymptotically of maximal
chirality. In higher dimensions, finding the upper bound of the chiral index and exhibiting extreme chirality distri-
butions are open problems.
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