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Abstract

We utilize the method of Bellman functions to derive newLp-estimates of Littlewood–Paley type involvingp−1. Among the
applications to singular integrals we improve the 2(p−1) bounds for the Ahlfors–Beurling operator onLp(C) whenp → ∞. In
addition, dimensionless estimates of Riesz transforms in the classical as well as in the Ornstein–Uhlenbeck setting ar
To cite this article: O. Dragičević, A. Volberg, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Fonction de Bellman pour obtenir des estimations de type Littlewood–Paley et de type assymptotique pour le pro-
blème p − 1. On utilise la technique de la fonction de Bellman pour obtenir les estimations nouvelles et assez générale
de Littlewood–Paley. Comme la premier consequence de nos estimation du type de Littlewood–Paley on derive les
classiques concernants les bornes libre de dimension pour les transformations de Riesz. La deuxième consequence
lioration de la borne dansLp(C) de transformation de Ahlfors–Beurling quandp → ∞. Pour citer cet article : O. Dragičević,
A. Volberg, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction and main objects

The main purpose of this Note is to summarize certain estimates of Littlewood–Paley type onLp in whichp−1
appears as a key factor. They were derived in cases of different semigroup extensions. The method expl
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the Bellman function, often tends to give precise estimates. These inequalities are then applied to different
singular integrals, where the results obtained are in some cases best known to date.

Let us begin by setting up some notation.

Poisson extensions: take a functionf ∈ Cc(R
n) and denote byPf the continuous prolongation off onto

R
n+1+ := R

n × (0,∞) which coincides withf on the boundary and satisfies the Laplace equation�ϕ = 0 in
the upper half-space (here� stands for the self-adjoint closure of the usual Laplacian). Equivalently, it is give
a semigroup generatorA = √−�, i.e.Pf (x, t) = e−tAf (x).

For a givenf on the plane, itsheat extension to the upper half-spaceR3+ can be defined by the formu
Hf (x, t) := et�f (x). Such a function solves the heat equation�ϕ = ∂tϕ in R

3+, whereas on the boundary
coincides withf .

Among the main driving forces behind our quest forp − 1 estimates is theAhlfors–Beurling operator T . It is
defined as a principal value integral by

Tf (z) = − 1

π

∫
C

f (ζ )

(z − ζ )2
dA(ζ ).

There is a long-standing conjecture by Iwaniec [5] which asserts that forp ∈ (1,∞),

‖T ‖B(Lp(C)) = p∗ − 1, (1)

wherep∗ = max{p,p′}. The roots of this problem lie deeply in the theory of quasiconformal mappings, wh
has been known for decades thatT plays an essential rôle.

ClassicalRiesz transforms Rk , k = 1, . . . , n, onLp(Rn) can be introduced symbolically asRk = ∂k ◦A−1. They
are Fourier multipliers with symbols ixk/‖x‖. Their connection to the Ahlfors–Beurling operator is revealed by
well-known identityT = R2

2 − R2
1 + 2iR1R2, whereR1 andR2 are the Riesz transforms on the plane.

Ornstein–Uhlenbeck Riesz transforms: in case whenRn is endowed with the normalized Gaussian meas
dµ(x) = (2π)−n/2 e−|x|2/2 dx, a natural way to obtain a symmetric operator related to� is to consider the
Ornstein–Uhlenbeck Laplacian

�OU := � −
n∑

i=1

xi

∂

∂xi

.

The same symbol will be used to denote its closure, which is self-adjoint in the GaussianL2. This operator gener
ates the third type of an extension that we are going to consider. Let the symbolΨf stand for the ‘harmonic’ contin
uation of a functionf from R

n to R
n+1+ generated by�OU . Explicitly, Ψf (x, t) = e−tAf (x) whereA = √−�OU .

This is clearly an analogue to the Poisson extension in the classical setting. The associated Riesz trans
given formally byRk = ∂k ◦ A−1π0, whereπ0 is the orthogonal projectionL2(Rn,µ) → {f ; ∫

Rn f dµ = 0}⊥.
For a differentiable,Rm-valued functionϕ = (ϕ1, . . . , ϕm) defined on some domainΩ ⊂ R

n, we introduce its
Jacobi matrix Jϕ as usual:Jϕ(ω) = [∂jϕi(ω)] i=1,...,m

j=1,...,n

for eachω ∈ Ω . Finally, by ‖ · ‖HS we will denote the

Hilbert–Schmidt norm of a matrix.

2. Results

Our first results are the following Littlewood–Paley-type inequalities (LPI) which we derive in cases
three semigroup extensions described in the previous section. In all statements to follow,p andq are going to be
conjugate exponents from(1,∞).
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Theorem 2.1 (LPI for Poisson kernel).Let M,N,n be arbitrary natural numbers. Take test functions f ∈
Lp(Rn → C

M) and g ∈ Lq(Rn → C
N). Then

2

∞∫
0

∫
Rn

∥∥J (Pf )(x, t)
∥∥

HS

∥∥J (Pg)(x, t)
∥∥

HS t dx dt � (p∗ − 1)‖f ‖p‖g‖q .

Theorem 2.2 (LPI for Gaussian Poisson kernel).There is an absolute constant C > 0, such that for all test functions
f,g and 1< p < ∞,

∞∫
0

∫
Rn

∥∥J (Ψf )(x, t)
∥∥

HS

∥∥J (Ψg)(x, t)
∥∥

HSt dµ(x)dt � C(p∗ − 1)‖f ‖L
p
µ
‖g‖L

q
µ
.

Theorem 2.3 (LPI for heat kernel).For any f,g ∈ C∞
c (R2) we have

2

∞∫
0

∫

R2

∥∥J (Hf )(x, t)
∥∥

HS

∥∥J (Hg)(x, t)
∥∥

HSdx dt � (p∗ − 1)‖f ‖p‖g‖q .

The proofs of these theorems rely heavily on two things: (i) sharp properties of the function we bring up
orem 2.5 that are closely related to the result of Burkholder [2] involving differential subordination of martin
(ii) an elementary lemma from linear algebra, which is slightly unexpected. We are deeply grateful to S.
who supported our belief in the truth of this lemma at the moment of doubt. Let us start with it.

Lemma 2.4. Suppose H is a finite-dimensional real Euclidean space; Hi , i = 1,2, are two non-trivial mutually
orthogonal subspaces of H and Pi are the corresponding orthogonal projections. Let T be a self-adjoint operator
such that 〈T h,h〉 � 2‖P1h‖‖P2h‖ for all h ∈ H. Then there exists τ > 0, satisfying

〈T h,h〉 � τ‖P1h‖2 + τ−1‖P2h‖2

again for all h ∈ H. Hence for any Hilbert–Schmidt operator L, acting from any space ( possibly infinite-
dimensional ) into H, we have

tr(L∗T L) � 2‖P1L‖HS‖P2L‖HS.

In order to define properly the function stemming from (i) above we need some further notation. So letM,N be
natural numbers and defineΩ = {(ζ, η,Z,H) ∈ C

M × C
N × R × R; |ζ |p < Z, |η|q < H }.

Theorem 2.5. There is a function B : Ω → R, such that 0 � B(ζ, η,Z,H) � (p∗ − 1)Z1/pH 1/q everywhere on its
domain, and for any a± = (ζ±, η±,Z±,H±) ∈ Ω ,

B

(
a+ + a−

2

)
− B(a+) + B(a−)

2
�

∣∣∣∣ζ+ − ζ−
2

∣∣∣∣ ·
∣∣∣∣η+ − η−

2

∣∣∣∣. (2)

This is ourBellman function. We are justified in calling it this way, because it imitates the behavior of Bell
functions from the theory of Optimal Control, see e.g. [6]. Just that in our case it isStochastic Optimal Control,
which is reflected in the fact that the key property ofB, namely (2), is asecond order differential inequality which
plays the role of the second order Bellman PDE for stochastic Bellman function (classical Bellman functions
the first order Bellman PDE). Readers interested in stochastic Bellman function theory are referred to [6
those interested in relations between Bellman functions in Harmonic Analysis and Bellman functions in Sto
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Optimal Control should consult the survey paper [9]. The concept of the Bellman function in Harmonic An
first appeared in the preprint version of [8] in 1995 and was developed into a sharp tool in [3,4,7,8,10,1
explained in [9] how one can ‘guess’ (2) from the form of the inequality one needs to prove. In our prese
this is our LPI.

We conclude by displaying ourp−1 estimates for certain singular integrals. They were derived as consequ
of Theorems 2.1–2.3 and, in a sense, are their weaker versions. Still, some of the results we obtained ar
known at present. The first one concerns the Ahlfors–Beurling operator.

Theorem 2.6.

lim sup
p∗→∞

‖T ‖p

p∗ − 1
�

√
2 and lim

p∗→∞
‖T ‖L

p
real

p∗ − 1
= 1.

The inequality‖T ‖p � 2(p∗ − 1) was first proven in [10] and shortly afterwards independently in [1].
two other inequalities above are asymptotically better and represent additional evidence in favour of Iw
conjecture (1).

The last application involves dimension-free estimates for Riesz transforms. The first such result was o
by E. Stein. In the Gaussian case we actually reprove the classical result of P.A. Meyer obtained first by prob
methods. G. Pisier presented later an analytic proof.

Theorem 2.7. If 1< p < ∞ and f ∈ Lp(Rn), then

‖R1f, . . . ,Rnf ‖Lp(Rn→Cn) � 2(p∗ − 1)‖f ‖Lp(Rn),

and therefore also ‖Rk‖B(Lp) � 2(p∗ −1) for k = 1, . . . , n. In the case of the Ornstein–Uhlenbeck Riesz transforms
there are constants Cp > 0, not depending on the dimension n, for which

‖R1f, . . . ,Rnf ‖L
p
µ(Rn→Cn) � Cp‖f ‖L

p
µ(Rn).

References

[1] R. Bañuelos, P. Méndez-Hernández, Space–time Brownian motion and the Beurling–Ahlfors transform, Indiana Univ. Math.
(2003) 981–990.

[2] D.L. Burkholder, Sharp inequalities for martingales and stochastic integrals, in: Colloque Paul Lévy sur les Processus Stoc
(Palaiseau, 1987), Astérisque 157–158 (1988) 75–94.
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