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Abstract

Based on a PML for the advective wave equation, we propose two PML models for the linearized Euler equatio
derivation of the first model can be applied to other physical models. The second model was implemented. Numeric
are shown.To cite this article: F. Nataf, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Nouvelles constructions de couches parfaitement adaptées pour le systéme d’Euler linéarisé. A partir d’une couche
adaptée pour l’équation des ondes advectives, nous proposons deux modèles de telles couches pour les équations d
risées. La construction du premier modèle peut être appliqué à d’autres systèmes d’équations aux dérivées partielles.
modèle a été implémenté. Des résultats numériques illustrent l’intérêt de cette construction.Pour citer cet article : F. Nataf,
C. R. Acad. Sci. Paris, Ser. I 340 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Since the work by Berenger on perfectly matched layer for the Maxwell equations [2] in a computation
many works have been devoted to this subject. We consider here the linearized Euler equations, see
references therein. The key difficulty is the possible instability of vorticity waves especially for oblique flow
address this question and propose two ways to design PML for the Euler equations that are based on th
PML for the underlying advective wave equation. The derivation of the first model can be applied to other p
models. The second model was implemented and numerical results are shown.
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2. Analysis of the Euler system via Smith factorization

We write the linearized Euler equations as:
 ∂t + ū∂x + v̄∂y ρ̄c̄2∂x ρ̄c̄2∂y

1
ρ̄
∂x ∂t + ū∂x + v̄∂y 0

1
ρ̄
∂y 0 ∂t + ū∂x + v̄∂y


(

p

u

v

)
=

(
fp

fu

fv

)
. (1)

We first recall the definition of the Smith factorization of a matrix with polynomial entries and apply it to sy
of PDEs:

Theorem 2.1. Let n be an integer and A an invertible n × n matrix with polynomial entries with respect to the
variable λ : A = (aij (λ))1≤i,j≤n.

Then, there exist three matrices with polynomial entries E, D and F with the following properties: det(E) =
det(F ) = 1, D is a diagonal matrix and A = EDF .

This factorization is different from the diagonalization of a matrix which could involve, for instance, takin
square root of a polynomial, see [7] for more details. We first take formally the Fourier transform of the sys
(1) with respect toy andt (dual variables arek andω resp.). We keep the partial derivatives inx since in the seque
we shall design a PML for a truncation of the domain in thex direction. We note

ˆ̂
AEuler=


 iω + ū∂x + ikv̄ ρ̄c̄2∂x iρ̄c̄2k

1
ρ̄
∂x iω + ū∂x + ikv̄ 0
ik
ρ̄

0 iω + ū∂x + iv̄k


 . (2)

We can perform the Smith factorization ofˆ̂AEuler by considering it as a matrix with polynomials in∂x entries. We
have

ˆ̂
AEuler= EDF (3)

where D11 = D22 = 1 and D33 = ˆ̂G ˆ̂L, ˆ̂G = iω + ū∂x + ikv̄ and ˆ̂L = −ω2 + 2ikūv̄∂x + 2iω(ū∂x + ikv̄) +
(c̄2 − v̄2)k2 − (c̄2 − ū2)∂xx . The operators showing up in the diagonal matrix have a physical meaning,G is a
first order transport operator andL is the advective wave operator.

3. PMLs for the Euler system

Among the two operatorsL andG, the only operator which generates waves propagating in both positivex and
negativex directions is the operatorL. This suggests that designing a PML for the Euler equation can be red
to the design of a PML for the advective wave operatorL. This question has been the subject of several works [
and references therein. Following these works, we use for operatorL a PML defined by replacing thex derivatives
by a ‘pml’ x derivative. The definition is as follows:

Lpml = ∂tt + 2ūv̄∂y(∂
pml
x ) + 2∂t (ū∂

pml
x + v̄∂y) − (c̄2 − v̄2)∂yy − (c̄2 − ū2)(∂

pml
x )2 (4)

where

∂
pml
x = α(x)

[
∂x − ū

c̄2 − ū2
(∂t + v̄∂y)

]
+ ū

c̄2 − ū2
(∂t + v̄∂y) (5)

where the operatorα(x) is a pseudo-differential operator in thet andy variables:

α(x)(φ) = F−1
(

c̄(iω + ikv̄) ˆ̂
φ

)
(6)
c̄(iω + ikv̄) + (c̄2 − ū2)σ (ω,x, k)
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whereσ(ω,x, k) ≥ 0 is the damping parameter of the PML.
Based on (3), a first possibility is to define a PML for the Euler system by substitution ofL with Lpml in

matrix D. In matricesE andF , thex derivatives are not modified. Modifying only the advective wave oper
avoids instability problems with the vorticity wave. We thus define:

ˆ̂
A

pml1
Euler= EDpmlF (7)

whereD
pml
11 = D

pml
22 = 1 andD

pml
33 = ˆ̂G ˆ̂Lpml. A direct computation yields:

ˆ̂
A

pml1
Euler= ˆ̂

AEuler+
( 0 0 0

0 0 0
C1 C2 0

)
(8)

where

C1 = (∂x − ∂
pml
x )

ˆ̂G[(ū2 − c̄2)(∂x + ∂
pml
x ) + 2ū(iω + iv̄k)]

iρ̄c̄2k(iω + ikv̄)
and C2 = C1

ρ̄ū
.

The difference with the Euler system concerns only the last equation on the variablev, but it implies a division
by iρ̄c̄2k(iω + ikv̄) which can be zero. Takingσ(ω,x, k) = σ̃ (x)(ρ̄c̄2k(ω + kv̄))2 would preventC1 andC2 from
being singular. However, it would be at the expense of the damping of the PML. Indeed,σ(ω,x, k) would be small
for small values ofk or of iω + ikv̄. The present first model raises difficulties. Nevertheless, it should de
interest since it corresponds to a systematic way to design a PML for systems of PDEs. Moreover, since mE
andF are not unique, it is quite possible that a more suitable Smith factorization when used in formula (7)
lead to a practicable PML.

The rationale for the second model we introduce now is that the pressurep satisfies an advective wave equati
which is the only equation that demands a PML. Indeed, let multiply (2) by the matrix

El =

 ˆ̂G −ρ̄c̄2∂x −iρ̄c̄2k

0 1 0
0 0 1


 . (9)

We get:

El
ˆ̂
AEuler=


 ˆ̂L 0 0

1
ρ̄
∂x iω + ū∂x + ikv̄ 0
ik
ρ̄

0 iω + ū∂x + iv̄k


 . (10)

We substituteˆ̂L with ˆ̂Lpml and applyEl−1 and we are thus led to define:

ˆ̂
A

pml2
Euler=




ˆ̂G−1(
ˆ̂Lpml + c̄2(∂xx − k2) ρ̄c̄2∂x iρ̄c̄2k

1
ρ̄
∂x

ˆ̂G 0

ik
ρ̄

0 ˆ̂G


 = ˆ̂

AEuler+

 (

ˆ̂Lpml − ˆ̂L)
ˆ̂G−1 0 0

0 0 0
0 0 0


 . (11)

In order to get rid of the operator̂̂G−1, we introduce a new variableP such thatG(P) = p with the following in-
terface conditions between the Euler media and the PML:P = 0, p andu are continuous,∂x(pEuler) = ∂

pml
x (ppml).

This procedure leads to a perfectly matched layer if the layer is infinite, see [5].

4. Numerical results

The 2D linearized Euler equations are discretized on a uniform staggered grid using a Yee Schem
convective derivatives are discretized using an upwind scheme both in the Euler region and in the PM
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Fig. 1. Pressure (left) and error on the pressure (right) near the corner for an oblique velocityM = 0.9 vs. time.

Fig. 1. Pression (gauche) et erreur sur la pression (droite) en fonction du temps près du coin pour une vitesse obliqueM = 0,9.

reference solution is obtained by computing the solution on a much larger domain. The initial solutions a
Let f (t, x, y) = (1−2π2(fct −1)2)e−π2(fct−1)2

δM(x, y) for t < Ts and zero fort > Ts with Ts = 0.05,fc = 4/Ts

andδM is the Dirac mass located in the middle of the computational domain. The right-hand side wasf (t, x, y)

on all three equations of system (1). For an oblique velocityu0 = v0 = 270, pressure near the upperleft corne
shown on Fig. 1. The stability of the PML was assessed by computing on time intervals much longer tha
used for generating the figures. Both PML models have a straightforward three-dimensional extension a
be used with variable coefficients but have not been tested in these cases.
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