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Abstract

Based on a PML for the advective wave equation, we propose two PML models for the linearized Euler equations. The
derivation of the first model can be applied to other physical models. The second model was implemented. Numerical results
are shownTo citethisarticle: F. Nataf, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
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Résumé

Nouvelles constructions de couches parfaitement adaptées pour le systéme d’Euler linéarisé. A partir d'une couche
adaptée pour I'équation des ondes advectives, nous proposons deux modéles de telles couches pour les équations d’Euler liné:
risées. La construction du premier modéle peut étre appliqué a d’autres systémes d'équations aux dérivées partielles. Le secon
modéle a été implémenté. Des résultats numériques illustrent I'intérét de cette constRaiiodter cet article: F. Nataf,

C. R. Acad. Sci. Paris, Ser. | 340 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Since the work by Berenger on perfectly matched layer for the Maxwell equations [2] in a computational box,
many works have been devoted to this subject. We consider here the linearized Euler equations, see [4,6] and
references therein. The key difficulty is the possible instability of vorticity waves especially for oblique flows. We
address this question and propose two ways to design PML for the Euler equations that are based on the use of ¢
PML for the underlying advective wave equation. The derivation of the first model can be applied to other physical
models. The second model was implemented and numerical results are shown.
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2. Analysis of the Euler system via Smith factorization

We write the linearized Euler equations as:

3 + udy + 0y pE20, pE2dy » fr

%ax & + idy + 0y 0 (u):<fu>. (1)
2, 0 O +idy + 09,/ \V fo

We first recall the definition of the Smith factorization of a matrix with polynomial entries and apply it to systems

of PDEs:

Theorem 2.1. Let n be an integer and A an invertible n x n matrix with polynomial entries with respect to the
variable A : A = (aij()u))lfi,an.

Then, there exist three matrices with polynomial entries £, D and F with the following properties: det(E) =
detF) =1, D isadiagonal matrixand A= EDF.

This factorization is different from the diagonalization of a matrix which could involve, for instance, taking the
square root of a polynomial, see [7] for more details. We first take formally the Fourier transform of the system in
(1) with respect toy andr (dual variables aré andw resp.). We keep the partial derivativesigince in the sequel
we shall design a PML for a truncation of the domain in théirection. We note

X iw~+ idy +ikv P20y ipE2k
Abuler= 70 i+ @dy + kv 0 . )
% 0 i+ idy, +ivk

We can perform the Smith factorization B uler by considering it as a matrix with polynomials dp entries. We
have

Aguler= EDF ®)

where D11 = Doy = 1 and D3z = GL, G = iw + @10, + ikv and £ = —? + 2ikiivd, + 2iw(id, + ikd) +
(€2 — 19)k? — (¢% — 1%)d,,. The operators showing up in the diagonal matrix have a physical meaiisga
first order transport operator adis the advective wave operator.

3. PMLsfor the Euler system

Among the two operator§ andg, the only operator which generates waves propagating in both pasitine
negativex directions is the operatat. This suggests that designing a PML for the Euler equation can be reduced
to the design of a PML for the advective wave operator his question has been the subject of several works [1,3]
and references therein. Following these works, we use for opetad?ML defined by replacing thederivatives
by a ‘pml’ x derivative. The definition is as follows:

Lom = iy + 2009, (08™) + 20, @™ + 19,) — @ — 19y, — (2 — D) (P™)? (4)
where
aPm :a(x)I:BX -+ aay)} + o (3 + 10, )
cCc—Uu cc—Uu

where the operatar(x) is a pseudo-differential operator in thandy variables:
c(iw +ikv) :>

E(ia)+ikt7)~|—(52—ﬁ2)a(a),x,k)¢ ©)

a(x)($) =fl(
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whereo (w, x, k) > 0 is the damping parameter of the PML.

Based on (3), a first possibility is to define a PML for the Euler system by substitutighwith £P™ in
matrix D. In matricesE and F, the x derivatives are not modified. Modifying only the advective wave operator
avoids instability problems with the vorticity wave. We thus define:

APML _ g ppml @)

Euler

whereDP™ = PP — 1 andDB]' = GLP™. A direct computation yields:

roml 0O 0 O

AETIer: AEuler+ < 0 O 0) (8)
C1 C» O

where

C1

_apmiAroo pm R SNINT
(0y — 9y )Gl —c)(0x + 0y )+ 2u(iw+ivk)] and Cp= L.

ipc2k(iw + ikD) ou
The difference with the Euler system concerns only the last equation on the varjdhleit implies a division
by ip%k (iw + ikv) which can be zero. Taking(w, x, k) = 6 (x)(p%k (w + kv))? would preventC; andCs from
being singular. However, it would be at the expense of the damping of the PML. Indeeds, k) would be small
for small values of or of iw + ikv. The present first model raises difficulties. Nevertheless, it should deserve
interest since it corresponds to a systematic way to design a PML for systems of PDEs. Moreover, sincefnatrices
and F are not unique, it is quite possible that a more suitable Smith factorization when used in formula (7) would
lead to a practicable PML.

The rationale for the second model we introduce now is that the prepsatisfies an advective wave equation
which is the only equation that demands a PML. Indeed, let multiply (2) by the matrix

G —pclo, —ipcck

C1=

0 0 1
We get:
. L 0 0
ElAgyer= | 29, i+ iady +iko 0 . (10)
Ik 0 iw+ 0, + ik

>

We substitute with £P™ and applyE/—1 and we are thus led to define:

~
~

- GTULPM + B2 — k) 20, ipEk A B _Aé-1 o o

AETIer: %ax g 0 = AEuler+ 0 0 0] (11)
ik 0 é 0 0 0
o

In order to get rid of the operatgl—*, we introduce a new variable such thaiG(P) = p with the following in-
terface conditions between the Euler media and the PRI 0, p andu are continuousg, (peuter) = 8fm'(ppm|).

This procedure leads to a perfectly matched layer if the layer is infinite, see [5].
4. Numerical results

The 2D linearized Euler equations are discretized on a uniform staggered grid using a Yee Scheme. The
convective derivatives are discretized using an upwind scheme both in the Euler region and in the PMLs. The
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Fig. 1. Pressure (left) and error on the pressure (right) near the corner for an oblique vidleei®9 vs. time.
Fig. 1. Pression (gauche) et erreur sur la pression (droite) en fonction du temps prés du coin pour une vitess¢ eblidlie

reference solution is obtained by computing the solution on a much larger domain. The initial solutions are zero.
Let £(t, x, y) = (1— 27 2( fot — 1)2) e Jei=D?5, (. y) for t < T, and zero for > T, with T, = 0.05, f, = 4/ T,

andéy, is the Dirac mass located in the middle of the computational domain. The right-hand siggavasy)

on all three equations of system (1). For an oblique velagity- vo = 270, pressure near the upperleft corner is
shown on Fig. 1. The stability of the PML was assessed by computing on time intervals much longer than those
used for generating the figures. Both PML models have a straightforward three-dimensional extension and could
be used with variable coefficients but have not been tested in these cases.
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