Available online at www.sciencedirect.com

SGIENCE@DIHEGT’

ELSEVIER C. R. Acad. Sci. Paris, Ser. | 340 (2005) 751-754

——_ COMPTES RENDUS

" MATHEMATIQUE

http://france.elsevier.com/direct/CRASS1/

Differential Geometry/Algebraic Geometry

Corrigendum to the Note “Symplectic capacities of toric manifolds
and combinatorial inequalities”
[C. R. Acad. Sci. Paris, Ser. | 334 (10) (2002) 889-892]

Guangcun Ld

Department of Mathematics, Beijing Normal University, Beijing 100875, PR China
Received 14 December 2004; accepted after revision 5 April 2005
Available online 4 May 2005

Presented by Jean-Pierre Demailly

Abstract

In this Note we correct some results in Lu, Symplectic capacities of toric manifolds and combinatorial inequalities [C. R.
Acad. Sci. Paris, Ser. | 334 (10) (2002) 889-892] on (pseudo) symplectic capacities for toric mantaiite.this article:
G. Lu, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Capacités symplectiques de variétés toriques et des associés résultats. Daus cette Note, nous corrigeons des résultats
associés dans Lu, Symplectic capacities of toric manifolds and combinatorial inequalities [C. R. Acad. Sci. Paris, Ser. | 334
(10) (2002) 889-892] sur les capacités (pseudo) symplectiques de variétés tdrauester cet article: G. Lu, C. R. Acad.

Sci. Paris, Ser. | 340 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

The notion of the pseudo symplectic capacity was introduced by the author in [@@].ir@ [4] was written
ascﬁzzo) in the recent [3], v9 in view of some reader’s suggestion.) In [4] three theorems were announced based
on the author’s work in [3] and Batyrev's computation for the quantum cohomology of the toric manifolds in [1].
However, Batyrev's results in [1] were true only for Fano toric manifolds. So our results in [4] can only hold for

this class of manifolds. That is, Theorems 1, 2 in [4] should be written as:
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Theorem 1. For a complete regular fanX' in R”, let G(X) = {u1,...,ugq} be the set of all generators of
1-dimensional cones ¥, and Py be the compact toric manifold associated with Assume thaty is a
strictly convex support function faE' representing a Kahler form oRyx, and thatA, = {x € (R")* | (x,m) >
—p(m) Ym € R"} is the corresponding Delzant polytope(iR™)*. If Py is also Fano, i.e., the anticanonical divisor
—Kp,. is ample, then

d d
T(X,p):= infi Z(p(uk)ak > 0’ Zakuk =0, ax €Zxo0, k=1, .. .,d} >0, D
k=1 k=1

and the Gromov widthW; and pseudo symplectic capaciti€s= C,(fz) C,(fz‘” satisfy
Wi (Px, ¢) < C(Ps, ¢; pt, PD([¢])) < T(Z,9) Vn=2. @)
Moreover, whethePy is Fano or not it always holds that

1
We(Px, 9) > EWG(lm(Aw) x T", wcan), (3

where(Int(Ay) x T, wean) = ({(x,0) | x € Int(Ay), 6 e R" /21 7"}, ZZzl dx A d6g).
If X4 is a Fano toric manifold associated with Delzant polytop€i)*

d
A:ﬂ{xe(R”)*Uk(x) 1= (x, ug) — Ax > 0} (4)
k=1

andw, is the canonical symplectic form on it then

d d
T(A) = inf{—Zkkak > o( > arup =0, ay € Zxo, k= 1,...,d} >0 (5)
k=1 k=1
and it holds that forlC = C,(fz) C,(fz") and anyn > 2,
We (X2, w4) < C(Xa, 045 pt, PD([wal)) <27 - T(A). (6)

Furthermore, ifVert(A) denotes the set of all vertices afand E,(A) is the shortest distance from the vertex
to the adjacent vertexes, then for any capacity function

2r - max E,(A)<c(Xa,wa) )
peVert(A)

whetherX 4 is Fano or not.
In general case we have:

Theorem 2. Let Px be the compact toric manifold associated with a complete reguladfan R” with G(X) =
{u1,...,uq}. For a strictly convex support function (for X) representing a Kahler form oRy let A(X, ¢) be
the maximum o}__, ¢(u;)a; for which (a1, ..., a4) € 7%, satisfiesy 4, aju; =0and1< Y a4 <n+ 1.

Then forC = Cﬁ,zz) C,(fZC’),
0< A(Z,¢) < (n+1)maxe(;) and (8)
1

Ws Pz, 9) < C(Ps,¢: pt, PD([9])) < A(Z,¢) VYn>2. )

If (X4, wa) is the toric manifold associated with the Delzant polytepe (R")* in (4), but it might not be Fano,
and A(4) (= A(Za, wa)) is the maximum of- 27 9, 3;q; forall (a1, ..., a4) € 7%, satisfyingy"?_, aju; =0

and1< Y% a; <n+1, then
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AN < -2r(n+1) m,in A and (20)
2rW(A) K Wi (Xa, wa) < (XA, wA; pt, PD([wA])) < A(4) (11)
for c =C3,c2.

The projective toric manifolds are uniruled. The following proposition is a key to prove Theorem 2. Its proof
may directly be obtained by combining Kollar's arguments in [2] and the proof of Proposition 7.3 in [3], v9, cf., [5].

Proposition 3. For a uniruled manifoldX of positive dimension there exist homology classdse Hy(X; Z) with
1<c1(A)<n+1 ac Hy 2(X,Q) andB € Hy(X; Q) such that

Ya,03(pt; pt,a, B) #0. (12)

In particular, this implies that there is a rational cur@ with 0 < (—Kx - C) < n + 1 through any general point
of X.

The final claim in Proposition 3 was first proved by Mori for Fano manifolds. In general case Mori [6] told
the author that it can be immediately obtained from Kollar’'s modification on a result in Proc. ICM90 by him. Our
method as a consequence of (12) actually suggested possible further generalizations.

An outline of proof of Theorem 2. We only need to prove (8) and the second inequality in (9). (See [5] for the
related details, notions and notations.) Singei®uniruled, Proposition 3 yields homology clasges Ho(Px; Z)

with 1 < c1(A) <n+1, ¢ € Hy,—2(Px,Q) and 8 € H.(Px; Q) such that¥, o 3(pt; pt, o, B) # 0. Since the
Gromov-Witten invariants are deformation invariants it follows ttaf], A) = Zlew(ui)u(A)i > 0 for any

¢ € K°(X). Note thatk (X) is the closure oK °(X) in H2(Ps, R). So([y], A) = Zlexp(u,-),u(A),- > 0 for any

¥ € K(X). In particular we get that (A); = Z;’lel(u,-)u(A),- ={([¢1],A) >0,l=1,...,d. These show that

is very effective. By Theorem 2.1 in [5¢1(A) = Zf’zlu(A)i and thus K Zleu(A),- < n + 1. The definition

of A(X, ¢) directly leads to

0<(l¢l, A) = Zw(u Y(A) < A(Z, ).
i=1

By the definition of GW(M, w; pt, o) in Definition 1.9 of [3], v9 we get that
GWo(Ps. ¢: pt, PD([¢])) < A(Z, 9).
Moreover it is clear that

d
Zw(ui)m < Z eupu; <(n+1) miax<p(ui)

@u;)>0

for eachu € Z% “0 saﬂsfyng _ymiu; =0 and 1< Z _1 i <n+1. The desired results may be obtained from
Theorem 1.13in [3], v9. O

It is well-known that the blow-ups of a toric manifold at its toric fixed points are also toric manifolds. However,
the blow up of a toric Fano manifold is not necessarily Fano again.

Theorem 4. Let P be a toric manifold obtained by a sequence of blowings up of a toric Fano manifold at toric
fixed points. S@G (X) = {u1,...,uq} C G(X). Then for any strictly convex support functigrior ) (also strictly
convex forX) it hold that

We (Ps, 9) < C(Ps.¢; pt, PD([¢])) <27 - T(X, ¢)
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for C = C,(fz) C,(fzc’) and anyn > 2. Here T (X, ¢) > 0 is given by(1) thoughT(i, @) might equal to zero in the
casePs: is not Fano.

A correction to Example (ii) in [4]. Lete], e5 ande be the dual basis of the standard basig:> andes in R3, and
A be a Delzant polytope with verticeg = 0, vy = e}, v2 = e5 andvz = 3. Itis well-known that the corresponding
toric manifold(X 4, wa) is exactly((C}P’3, 2wrs), where the Fubini—Studyrs is assumed to satisff@,l WFS=TT.
For 0< a < 1 consider a Delzant polytop&, c (R3)* with verticesvg = 0, vy = e, v2 = e;, v3 = aej + aej,
vq = ae3, vs = aej + aey. Clearly, the normal vectors to the 2-dimensional faceg\pfare uy = e, uz = e3,
uz=e3, uq=—e3, Us=—e; —e, —e3. S0A; = ﬂ,?zl{x € (R3* | (x, ug) — Ag > 0}, wherer1 =io=i3=0
andi4 = —a, A5 = —1. The associated toric manifol® 5, w»,) is exactly the blow-up of CP3, 2wgs) of weight
2(1—a) at a fixed point off'3-action 0n((CIP’3, 2wgs). From Theorem 2 it follows thatt (A,) < —87 min; A; = 8x
and

W (X, ®a,) < C(Xa, wa,; pt, PD([wa,])) <87 (13)

for € = C32, €. In particular, ifa = 1/2 we can use Theorem 2.5 in [5] to check thiils, ,. @, ,) is Fano.
By Theorem 1 we may géf (A1/2) = 1/2 and (13) can be strengthen as:

W6 (X Ay, 0a1,) < CHZ(XAUZ’ WAy DTS PD([C‘)Al/z])) ST
Theorem 4 in [4] should beorrectedas:
Theorem 5. Let X be a complete regular fan iR”. Then for any ample line bundle — Py and any strictly
convex support functiop;, representing the class (L) it holds that
e(L) <2m - A(X,¢L)
and thate(L) < 27 - T (X, ¢p) if Py is also Fano. Here (L) is the Seshadri constant af
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