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Abstract

In the context of the Burgers equation with distributed controls, we present optimal estimates for the minimal time
trollability T (r) of the initial data of norm� r in L2. To cite this article: E. Fernández-Cara, S. Guerrero, C. R. Acad. Sci.
Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Remarques sur la contrôlabilité exacte à zéro de l’équation de Burgers. Dans le contexte de l’équation de Burgers a
contrôles distribués, on présente une estimation optimale du temps minimal de contrôlabilitéT (r) des données initiales d
norme� r dansL2. Pour citer cet article : E. Fernández-Cara, S. Guerrero, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction and main results

Let T > 0 be an arbitrary positive time and let us assume thatω ⊂ (0,1) is a nonempty open set, with 0/∈ �ω. In
this Note, we will be concerned with the null controllability of the following system for the Burgers equation


yt − yxx + yyx = v1ω, (x, t) ∈ (0,1) × (0, T ),

y(0, t) = y(1, t) = 0, t ∈ (0, T ),

y(x,0) = y0(x), x ∈ (0,1).

(1)

Here,v = v(x, t) denotes the control andy = y(x, t) denotes the state. It will be said that (1) isnull controllable
at time T if, for everyy0 ∈ L2(0,1), there existsv ∈ L2((0,1) × (0, T )) such that

y(x,T ) = 0 in (0,1). (2)

E-mail addresses: cara@us.es (E. Fernández-Cara), sguerrero@us.es (S. Guerrero).
1631-073X/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2005.06.005



230 E. Fernández-Cara, S. Guerrero / C. R. Acad. Sci. Paris, Ser. I 341 (2005) 229–232

here, it

ny time.

at
y

n

ill be

andard
estimate

.

Some controllability properties of (1) have been studied in [2] (see Chapter 1, Theorems 6.3 and 6.4). T
is shown that one cannot reach (even approximately) stationary solutions of (1) with largeL2-norm at any timeT .
In other words, with the help of one control, the solutions of the Burgers equation cannot go anywhere at a

For eachy0 ∈ L2(0,1), let us introduceT (y0) = inf{T > 0: (1) is null controllable at timeT }. Then, for each
r > 0, we define the quantityT ∗(r) = sup{T (y0): ‖y0‖L2(0,1) � r}. Our main purpose in this Note is to prove th
T ∗(r) > 0 with an explicit sharp estimate in terms ofr , which in particular implies that (global) null controllabilit
at any positive time does not hold for (1).

More precisely, let us setφ(r) = (log 1
r
)−1. We have the following:

Theorem 1.1. There exist positive constants C0 and C1 independent of r such that

C0φ(r) � T ∗(r) � C1φ(r) as r → 0. (3)

Remark 1. The same estimates hold when the controlv acts on system (1) through the boundaryonly at x = 1
(or only atx = 0). When (1) is controlled at both pointsx = 0 andx = 1, it is unknown whether we still have a
estimate from below forT (r).

The main ideas of the proof of Theorem 1.1 will be presented in the following section. More details w
given in a forthcoming paper.

2. Sketch of the proof of Theorem 1.1

The proof of the estimate from above in (3) can be obtained by solving (1), (2) with a (more or less) st
fixed point argument, using global Carleman inequalities to estimate the control and energy inequalities to
the state and being very careful with the role ofT in these inequalities.

We will concentrate in the proof of the other estimate, that has been inspired by the arguments in [1].
We will prove that there exist positive constantsC0 andC′

0 such that, for any sufficiently smallr > 0, we can
find initial datay0 satisfying‖y0‖L2(0,1) � r with the following property: for any statey associated toy0, one has∣∣y(x, t)

∣∣ � C′
0r for somex ∈ (0,1) and anyt : 0 < t < C0φ(r).

Let us setT = φ(r) and letρ0 ∈ (0,1) be such that(0, ρ0) ∩ ω = ∅. We can suppose that 0< r < ρ0. Let us
choosey0 ∈ L2(0,1) such thaty0(x) = −r for all x ∈ (0, ρ0) and let us denote byy an associated solution of (1)

Let us introduce the functionZ = Z(x, t), with

Z(x, t) = exp

{
−2

t

(
1− e−ρ2

0(ρ0−x)3/(ρ0/2−x)2) + 1

ρ0 − x

}
. (4)

Then one hasZt − Zxx + ZZx � 0.
Let us now setw(x, t) = Z(x, t) − y(x, t). It is immediate that


wt − wxx + ZZx − yyx � 0, (x, t) ∈ (0, ρ0) × (0, T ),

w(0, t) > 0, w(ρ0, t) = +∞, t ∈ (0, T ),

w(x,0) = r, x ∈ (0, ρ0)

(5)

and, consequently,w−(x, t) ≡ 0. Indeed, let us multiply the differential equation in (5) by−w− and let us integrate
in (0, ρ0). Sincew− vanishes atx = 0 andx = ρ0, after some manipulation we find that

1

2

d

dt

ρ0∫
|w−|2 dx +

ρ0∫
|w−

x |2 dx =
ρ0∫

w−(ZZx − yyx)dx � C

ρ0∫
|w−|2 dx. (6)
0 0 0 0
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sed on
Hence,

y � Z in (0, ρ0) × (0, T ). (7)

Let us setρ1 = ρ0/2 and let us introduce the solutionu of the auxiliary system


ut − uxx + uux = 0, (x, t) ∈ (0, ρ1) × (0, T ),

u(0, t) = Z(ρ1, t), u(ρ1, t) = Z(ρ1, t), t ∈ (0, T ),

u(x,0) = −r̃(x), x ∈ (0, ρ1),

(8)

wherer̃ is any regular function satisfying the following:r̃(0) = r̃(ρ1) = 0; r̃(x) = r for all x ∈ (δρ1, (1 − δ)ρ1)

and someδ ∈ (0,1/4); −r � −r̃(x) � 0;

|r̃x | � Cr and |r̃xx | � C in (0, ρ1), (9)

where C = C(ρ1) is independent ofr . Taking into account (7) and thatux, y ∈ L∞((0, ρ1) × (0, T )) (see
Lemma 2.1 below), a standard application of Gronwall’s lemma shows that

y � u in (0, ρ1) × (0, T ). (10)

We will prove that, for some appropriate choices ofC0 and C′
0, u(ρ1/2, t) remains below−C′

0r for any time
t < C0φ(r). This, together with (10), will prove Theorem 1.1.

We will need the following lemma:

Lemma 2.1. One has

|u| � Cr and |ux | � Cr1/2 in (0, ρ1) × (
0, φ(r)

)
, (11)

where C is independent of r .

A consequence of (11) is thatut − uxx � C∗r3/2 in (0, ρ1) × (0, φ(r)) for someC∗ > 0. Let us consider the
functionsp andq, given byp(t) = C∗r3/2t − r andq(x, t) = c(e−(x−(ρ1/4))2/4t +e−(x−3(ρ1/4))2/4t ). It is then clear
thatb = u − p − q satisfies



bt − bxx � 0, (x, t) ∈ (ρ1/4,3ρ1/4) × (
0, φ(r)

)
,

b(ρ1/4, t) � Z(ρ1, t) − C∗r3/2t + r − c
(
1+ e−ρ2

1/(16t)), t ∈ (
0, φ(r)

)
,

b(3ρ1/4, t) � Z(ρ1, t) − C∗r3/2t + r − c
(
1+ e−ρ2

1/(16t)), t ∈ (
0, φ(r)

)
,

b(x,0) = 0, x ∈ (ρ1/4,3ρ1/4).

(12)

Obviously, in the definition ofq, the constantc can be chosen large enough to haveZ(ρ1, t) − C∗r3/2t + r −
c(1+ e−ρ2

1/(16t)) < 0 for anyt ∈ (0, φ(r)). If this is the case, we getu � p + q and, in particular,

u(ρ1/2, t) � (p + q)(ρ1/2, t) = 2c e−ρ2
1/(64t) + C∗r3/2t − r.

Therefore, we see that there existC0 andC′
0 such thatu(ρ1/2, t) < −C′

0r for any t ∈ (0,C0φ(r)).
This proves (3) and, consequently, ends the proof of Theorem 1.1.

Proof of Lemma 2.1. The first estimate in (11) can be obtained in a classical way, using arguments ba
the maximum principle for the heat equation and the facts thatZ(ρ1, t) � Cr2 andZt(ρ1, t) � Cr2φ(r)−2 for
t ∈ (0, φ(r)). Let us explain how the second estimate in (11) can be deduced. Thus, let us setũ(x, t) = u(x, t) −
Z(ρ1, t). This function satisfies


ũt − ũxx + (

ũ + Z(ρ1, t)
)
ũx = −Zt(ρ1, t), (x, t) ∈ (0, ρ1) × (

0, φ(r)
)
,

ũ(0, t) = 0, ũ(ρ1, t) = 0, t ∈ (
0, φ(r)

)
,

ũ(x,0) = −r̃(x), x ∈ (0, ρ1).

(13)
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96.
• In a classical way, we can deduce energy estimates forũ:

‖ũ‖2
L∞(0,T ;L2(0,ρ1))

+ ‖ũx‖2
L2((0,ρ1)×(0,T ))

� C‖r̃‖2
L2(0,ρ1)

+ Cr

ρ1∫
0

φ(r)∫
0

∣∣Zt(ρ1, t)
∣∣dt dx � Cr2. (14)

From the definition of̃u, a similar estimate holds foru. Multiplying the equation satisfied bỹu by ũt , we also get
ũt ∈ L2((0, ρ1) × (0, T )), ũx ∈ C([0, T ];L2(0, ρ1)) and

‖ũt‖2
L2((0,ρ1)×(0,T ))

+ ‖ũx‖2
L∞(0,T ;L2(0,ρ1))

� C
(∥∥(

ũ + Z(ρ1, t)
)
ũx

∥∥2
L2((0,ρ1)×(0,T ))

+ ∥∥Zt(ρ1, ·)
∥∥2

L2(0,φ(r))
+ ‖r̃x‖2

L2(0,ρ1)

)
� Cr2. (15)

Here, we have used (9), the first estimate in (11) and (14). Obviously, this also holds for the norm ofũxx in
L2((0, ρ1) × (0, T )). Again, these estimates are satisfied byu.

• Next, multiplying the equation satisfied bỹu by −ũtxx and integrating in(0, ρ1), we have
∫ ρ1

0 |ũtx |2 dx +
1
2

d
dt

∫ ρ1
0 |ũxx |2 dx = ∫ ρ1

0 ũtxx(ũ + Z(ρ1, t))ũx dx + ∫ ρ1
0 ũtxxZt (ρ1, t)dx. Integrating in(0, t), we obtain the

following after several integration by parts:
t∫

0

ρ1∫
0

|ũtx |2 dx ds +
( ρ1∫

0

|ũxx |2 dx

)
(t) � C

(( ρ1∫
0

(|ũ + Z(ρ1, t)|2|ũx |2
)
dx

)
(t)

+
ρ1∫

0

r̃ r̃x r̃xx dx +
ρ1∫

0

|r̃xx |2 dx +
t∫

0

ρ1∫
0

|ũxx |2
∣∣ũ + Z(ρ1, s)

∣∣2 dx ds + r2

+
t∫

0

ρ1∫
0

(|ũt |2 + ∣∣Zt(ρ1, s)
∣∣2)|ũx |2 dx ds + ∣∣Zt(ρ1, t)

∣∣2 +
t∫

0

∣∣Ztt (ρ1, s)
∣∣2 ds

)
.

Using again the first estimate in (11) and (15), we deduce that

‖ũtx‖2
L2((0,ρ1)×(0,T ))

+ ‖ũxx‖2
L∞(0,T ;L2(0,ρ1))

� C
(
r4 + r2 + 1+ r4φ(r)−4 + r4φ(r)−8). (16)

As a consequence, (16) implies that

‖ũtx‖2
L2((0,ρ1)×(0,T ))

+ ‖ũxx‖2
L∞(0,T ;L2(0,ρ1))

� C. (17)

• Finally, in order to estimatẽux in L∞((0, ρ1) × (0, T )), we observe that for eacht ∈ (0, T ) there exists
a(t) ∈ (0, ρ1) such that̃ux(a(t), t) = 0. Using this fact, we obtain:

∣∣ũx(x, t)
∣∣2 = 1

2

∫ x

a(t)
ũx(ξ, t)ũxx(ξ, t)dξ .

Applying the estimates (15) and (17) toũx ∈ L∞(0, T ;L2(0, ρ1)) andũxx ∈ L∞(0, T ;L2(0, ρ1)) respectively, we
readily deduce that‖ũx‖2

L∞((0,ρ1)×(0,T )) � Cr which, in particular, implies the second estimate in (11).
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