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Abstract

Let µ be a positive locally finite Borel measure onR. A natural way to construct multifractal wavelet seriesFµ(x) =∑
j�0,k∈Z

dj,kψj,k(x) is to set|dj,k | = 2−j (s0−1/p0)µ([k2−j , (k + 1)2−j ))1/p0, wheres0,p0 � 0, s0 − 1/p0 > 0. Under
suitable conditions, the functionFµ inherits the multifractal properties ofµ. The transposition of multifractal properties wor
with most classes of statistically self-similar multifractal measures. Several perturbations of the wavelet coefficients
impact on the multifractal nature ofFµ are studied. As an application, the multifractal spectrum of the celebratedW-cascades
introduced by Arnéodo et al. is obtained.To cite this article: J. Barral, S. Seuret, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Séries d’ondelettes issues de mesures multifractales.Étant donnée une mesure borélienne positiveµ définie surR, il est
naturel de lui associer une série d’ondelettesFµ(x) = ∑

j�0,k∈Z
dj,kψj,k(x) en prescrivant ses coefficients d’ondelettes d

façon suivante : on pose|dj,k | = 2−j (s0−1/p0)µ([k2−j , (k + 1)2−j ))1/p0, oùs0,p0 � 0, s0 − 1/p0 > 0. Nous montrons com
ment les propriétés multifractales de la mesureµ peuvent se transmettre à la série d’ondelettesFµ. Nous étudions la stabilité d
la construction après perturbation des coefficients d’ondelettes. Ce travail permet de calculer le spectre multifractal de
aléatoires d’ondelettes d’Arnéodo et al.Pour citer cet article : J. Barral, S. Seuret, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

In this Note and in [2], we propose a natural construction of functionsFµ based on a measureµ and on a wavele
basis{ψj,k}(j,k)∈Z2. We focus for the exposition on the one-dimensional case, extensions to higher dimensi
immediate. Letψ be a wavelet in the Schwartz class, as constructed for instance in [10]. The set of fun
{ψj,k = ψ(2j · −k)}, where(j, k) ∈ Z

2, forms an orthogonal basis ofL2(R). Thus, any functionf ∈ L2(R) can
be written (note that we choose anL∞ normalization for the wavelet basis and the wavelet coefficients)
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1631-073X/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2005.06.029
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f =
∑
j∈Z

∑
k∈Z

dj,kψj,k, wheredj,k is the wavelet coefficient off : dj,k := 2j

∫

R

f (t)ψj,k(t)dt. (1)

Given a positive Borel measureµ on R, s0,p0 � 0, s0 − 1/p0 > 0, the wavelet seriesFµ is defined as

Fµ(x) =
∑
j�0

∑
k∈Z

±2−j (s0−1/p0)µ
([

k2−j , (k + 1)2−j
))1/p0ψj,k(x). (2)

For our purpose, we assume without loss of generality that the support ofµ is included in[0,1].
The notions of multifractal spectra and multifractal formalisms used in the following statement are defi

Section 2. The multifractal spectrum yields, thanks to their Hausdorff dimension, a geometrical information
singularity sets of a function or a measure. We establish that the control of the Hausdorff multifractal specdµ

of µ yields a control on the Hausdorff multifractal spectrumdFµ of Fµ:

Theorem 1.1.Let µ be a positive Borel measure whose support is included in[0,1], and s0,p0 � 0 such that
s0 − 1/p0 > 0. If µ obeys the multifractal formalism for measures at singularityα � 0, thenFµ (defined in(2))
obeys the multifractal formalism for functions ath = s0 − 1/p0 + α/p0, anddFµ(h) = dµ (α).

Theorem 1.1 is a satisfactory bridge between multifractal analysis of measures and multifractal analysis
tions. The wavelet series modelFµ possesses the remarkable property that its multifractal nature is still cont
after some natural multiplicative perturbations of its wavelet coefficients (see Section 3). This makes it p
to solve the problem of computing the Hausdorff multifractal spectra of the random cascades in wavele
trees (see [1] and Section 3). Indeed, these cascades, often used as models for instance in fluids mech
in traffic analysis, can be considered as perturbed versions ofFµ whenµ is a canonical cascade measure [9], a
their spectrum becomes accessible via this approach.

2. Definitions; proof of the transposition of the multifractal properties from µ toward Fµ

2.1. A multifractal formalism for functions

Let I ⊂ R be a non-trivial open interval, a functionf ∈ L∞
loc(I ), and x0 ∈ I . The functionf belongs

to Ch
x0

if there exists a polynomialP of degree smaller than[h] such that there existsC > 0 such that
|f (x) − P(x − x0)| � C|x − x0|h for all x ∈ R close enough tox0. Thepointwise Hölder exponentof f at x0

is thenhf (x0) = sup{h: f ∈ Ch
x0

}. The level sets of the functionhf are denotedEf
h = {x ∈ I : hf (x) = h}, h � 0.

Then the Hausdorff multifractal spectrum off is defined as the mappingdf :h �→ dimE
f
h , where dimE stands for

the Hausdorff dimension of a setE.
For any couple(j, k) ∈ N

∗ × Z, setIj,k = [k2−j , (k + 1)2−j ). Then, if x ∈ R, ∀j � 1, there exists a uniqu
integerkj,x such thatx ∈ Ij,kj,x

. Let us consider (as [7] does) for everyj � 0 k ∈ Z andx0 ∈ R the wavelet leader
of f defined byLj,k = sup

j ′�j, k′2−j ′ ∈Ij,k
|dj ′,k′ |, as well asLj(x0) = sup|k−kj,x0 |�1 Lj,k . The wavelet leader

decay rate provides a pointwise Hölder exponent characterization.

Proposition 2.1[7]. Letf be a function belonging toCε(R), for someε > 0, decomposed into(1). Then,∀x0 ∈ R,

hf (x0) = lim inf j→+∞
logLj (x0)

log 2−j .

Recall that the Legendre transform of a concave functionϕ defined on an open intervalI ⊂ R is the mapping
ϕ∗ :h ∈ R �→ ϕ∗(h) = infq∈I (qh − ϕ(q)) ∈ R ∪ {−∞}.

The scaling functionξf associated withf is defined in [7] by the formula (with the convention 0p = 0 ∀p ∈ R)
ξf :p ∈ R �→ ξf (p) = lim inf j→+∞ −j−1log2

∑
k∈Z

|Lj,k|p ∈ R ∪ {−∞,+∞}. The following result yields an
upper bound ofdf in terms ofξ∗ .
f
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Theorem 2.2 [7]. Let f and ψ as above. The scaling functionξf does not depend onψ , and for anyh � 0,
df (h) � (ξf )∗(h).

Definition 2.3.The functionf is said to obey the multifractal formalism ath � 0 if df (h) = ξ∗
f (h).

2.2. A slight modification of the box multifractal formalism for measures

Definition 2.4.Let µ be a positive Borel measure on[0,1], andx0 ∈ (0,1).

– The lower and upper Hölder exponent ofµ at x0 are αµ(x0) = lim inf j→+∞
logµ(Ij,kj,x0

)

log 2−j and αµ(x0) =
lim supj→+∞

logµ(Ij,kj,x0
)

log 2−j . Whenαµ(x0) = αµ(x0), their common value is denotedαµ(x0). Then, the left

and right lower Hölder exponents ofµ at x0 are defined byα−
µ(x0) = lim inf j→+∞

logµ(Ij,kj,x0
−1)

log 2−j and

α+
µ(x0) = lim inf j→+∞

logµ(Ij,kj,x0
+1)

log 2−j .

– For everyα � 0, let us introduceEµ
α = {x ∈ (0,1) ∩ supp(µ): αµ(x) = α, α−

µ(x) � α, α+
µ(x) � α}.

– The mappingdµ :α � 0 �→ dim(E
µ
α ) is called the multifractal spectrum ofµ.

As for functions, a scaling functionτµ can be associated withµ as the mappingτµ :q ∈ R �→ lim inf j→+∞ −j−1

log2
∑

0�k�2j µ(Ij,k)
q . It follows from [4] that dim(E

µ
α ) � τ ∗

µ(α).

Definition 2.5.The measureµ is said to obey the multifractal formalism atα � 0 if dim(E
µ
α ) = τ ∗

µ(α).

Large classes of statistically self-similar measures fulfill this formalism (see [3]), and thus Theorem 1.1
to the corresponding wavelet seriesFµ.

2.3. Sketch of the proof of Theorem 1.1

The proof we propose is based on Proposition 2.1 and Theorem 2.2 (see [11] for an alternative pro
α � 0 andh = s0 − 1/p0 + α/p0. ForFµ, for every couple(j, k), Lj,k = dj,k . Hence, due to Proposition 2.1, o

hasE
µ
α ⊂ E

Fµ

h . This yieldsτ ∗
µ(α) = dµ(α) � dFµ(h). Notice then thatξFµ(p) = p(s0 − 1/p0) + τµ(p/p0). Thus,

Theorem 2.2 implies thatdFµ(h) � τ ∗
µ(α).

3. Wavelet coefficients perturbation and application to theW-cascades of Arnéodo et al.

The perturbation we consider consists in multiplying the wavelet coefficients by the terms of a re
quence(π(j, k))j�0,0�k<2j . Consider the wavelet seriesFµ (2) and define, whenever it exists,F

pert
µ (x) =∑

j�0, 0�k<2j dj,k

(
F

pert
µ

)
ψj,k(x) with dj,k(F

pert
µ ) = dj,k · π(j, k) = ±2−j (s0−1/p0)µ(Ij,k)

1/p0π(j, k).

3.1. Principles of the multiplicative perturbations

Let us consider the following properties for(π(j, k))j,k :

(P1) lim sup
j→∞

j−1 max
0�k�2j −1

log
∣∣π(j, k)

∣∣ � 0, (P2) lim inf
j→∞ j−1 min

0�k�2j −1
log

∣∣π(j, k)
∣∣ � 0,

(P3) T = {
x: lim sup

j→+∞
j−1 log

∣∣π(j, kj,x)
∣∣ < 0

} = ∅, (P4(d)) 0� d < 1 and dimT � d.

Proposition 3.1[2]. If (π(j, k))j,k satisfies(P1) and(P2), then the two wavelet seriesFµ andF
pert
µ have the same

exponents at every pointx0. Moreoverξ pert ≡ ξFµ .

Fµ
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J. Fluid.
If (π(j, k))j,k satisfies(P1) and (P3), then∀α � 0, dµ(α) � d
F

pert
µ

(s0 − 1/p0 + α/p0) with equality ifα �
τ ′
µ(0+) andµ obeys the multifractal formalism atα.

If (π(j, k))j,k satisfies(P1) and (P4(d)) for somed ∈ [0,1), then ∀α � 0 such thatdµ(α) > d , dµ(α) �
d
F

pert
µ

(s0 − 1/p0 + α/p0), with equality ifα � τ ′
µ(0+) andµ obeys the multifractal formalism atα.

3.2. Examples of perturbation of wavelet series

– Uniform control onπ(j, k): (P1) (resp.(P2)) holds almost surely if theπ(j, k) are identically distributed with
a random variable with finite moments of every positive (resp. negative) order.

– Gaussianπ(j, k): Both(P1) and(P3) hold almost surely if theπ(j, k) are independent centered Gaussian r
dom variables with varianceσ(j, k) such that limj→∞ j−1 max0�k�2j −1 | logσ(j, k)| = 0. ThenF

pert
µ yields

a Gaussian process with controlled Hausdorff multifractal spectrum (thanks todµ) in its increasing part. If
moreover,π(j, k) ∼ N (0,1) andµ is quasi-Bernoulli [4] relatively to the dyadic basis, then the conclus
of the first assertion of Proposition 3.1 hold.

– Lacunaryπ(j, k) Fix p ∈ (0,1]. Suppose that theπ(j, k) are i.i.d. binomial random variables with param
terp. If p < 1/2 then(P1) and

(
P4(1+ log2(1−p))

)
hold almost surely; ifp � 1/2 thenT = ∅ almost surely

(see [5]). These lacunary wavelet series and those studied in [6] are of very different nature.

3.3. Applications to wavelet cascades on the dyadic tree of [1]

LetA = {0,1}. For everyw ∈A∗ = ⋃
j�0Aj (A0 := {∅}), let Iw be theb-adic subinterval of[0,1], semi-open

to the right, naturally encoded byw.
On the one hand, in [1], a random variableW is chosen as follows:P(|W| > 0) = 1, −∞ < E(log|W|) < 0,

and there existsη > 0 such that for everyh ∈ [0, η], f (h) = infq∈R(hq + 1 + log2 E(|W|q)) < 0. Then, a se-
quence(Ww)w∈A∗ of independent copies ofW is chosen, and a random wavelet seriesF is defined by its wavele
coefficients as follows:dj,k(F ) = Ww1Ww1w2 · · ·Ww1w2···wj

if j � 0, 0� k < 2j andIw = Ij,k .
On the other hand, let{Ww1···wj

}w∈A∗ = {|Ww1···wj
|/2E(|W|)}w∈A∗ , and for everyj � 1 let µj be the

measure obtained by distributing uniformly the massWw1Ww1w2 · · ·Ww1w2···wj
on Iw1w2···wj

and such tha
µj (R \ [0,1]) = 0. With probability one,µj converges vaguely to a measureµ asj → ∞; moreover, one ha
E(W logW) < 0 by construction so supp(µ) = [0,1] [8]. Then consider the seriesFµ with parameterss0 = 2
and p0 = 1, and its perturbationF pert

µ by the sequenceπ(j, k) = (µj (Ij,k)/µ(Ij,k))
1/p0. One has|dj,k(F )| =

2(s0−1/p0)j (2E(|W|))j 2−(s0−1/p0)jWw1 · · ·Ww1···wj
= 2(2+log2 E(|W |))j |dj,k(F

pert
µ )|. This enables to establish th

following result as a consequence of the first assertion of Proposition 3.1.

Theorem 3.2[2]. Suppose thatW � 1, P(W = 1) < 1/2 and all the moments ofW are finite. Let[hmin, hmax] =
{h: f (h) � 0}. With probability 1, one hasdF (h) = f (h) for everyh ∈ (hmin, hmax).
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