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Abstract

The main purpose of this Note is to show how a ‘nonlinear Korn’s inequality on a surface’ can be established. This in
implies in particular the following interestingper sesequential continuity property for a sequence of surfaces. Letω be a domain
in R

2, let θ :�ω → R
3 be a smooth immersion, and letθk :�ω → R

3, k � 1, be mappings with the following properties: Th
belong to the spaceH1(ω); the vector fields normal to the surfacesθk(ω), k � 1, are well defined a.e. inω and they also belong
to the spaceH1(ω); the principal radii of curvature of the surfacesθk(ω) stay uniformly away from zero; and finally, the thr
fundamental forms of the surfacesθk(ω) converge inL1(ω) toward the three fundamental forms of the surfaceθ(ω) ask → ∞.
Then, up to proper isometries ofR

3, the surfacesθk(ω) converge inH1(ω) toward the surfaceθ(ω) ask → ∞. To cite this
article: P.G. Ciarlet et al., C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Continuité en norme H 1 de surfaces en terme des normes L1 de leurs formes fondamentales. L’objectif principal
de cette Note est de montrer comment on peut établir une « inégalité de Korn non linéaire sur une surface ». Cette
implique en particulier la propriété de continuité séquentielle suivante, intéressante par elle-même. Soitω un domaine deR2,
soit θ :�ω → R

3 une immersion régulière, et soitθk :�ω → R
3, k � 1, des applications ayant les propriétés suivantes : E

appartiennent à l’espaceH1(ω) ; les champs de vecteurs normaux aux surfacesθk(ω), k � 1, sont définis presque parto
dansω et appartiennent aussi à l’espaceH1(ω) ; les modules des rayons de courbure principaux des surfacesθk(ω) sont
uniformément minorés par une constante strictement positive ; finalement, les trois formes fondamentales des surfaθk(ω)

convergent dansL1(ω) vers les trois formes fondamentales de la surfaceθ(ω) lorsquek → ∞. Alors, à des isométries propre
deR

3 près, les surfacesθk(ω) convergent dansH1(ω) vers la surfaceθ(ω) lorsquek → ∞. Pour citer cet article : P.G. Ciarlet
et al., C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Notations and other preliminaries

The symbolsMn, S
n, andO

n+ respectively designate the sets of all real matrices of ordern, of all real symmetric
matrices of ordern, and of all real orthogonal matricesR of ordern with detR = 1. The Euclidean norm of a vecto
b ∈ R

n is denoted|b| and|A| := sup|b|=1 |Ab| denotes the spectral norm of a matrixA ∈ M
n.

Let U be an open subset inRn. Given any smooth enough mappingχ :U → R
n, we let∇χ(x) ∈ M

n denote the
gradient matrix of the mappingχ at x ∈ U and we let∂iχ(x) denote theith column of the matrix∇χ(x). Given
any mappingF ∈ L1(U ;S

n), we let

‖F‖L1(U ;Sn) :=
∫
U

∣∣F (x)
∣∣dx,

and, given any mappingχ ∈ H 1(U ;Rn), we let

‖χ‖H1(U ;Rn) :=
{∫

U

(∣∣χ(x)
∣∣2 +

n∑
i=1

∣∣∂iχ(x)
∣∣2)dx

}1/2

.

A domainU in R
n is an open and bounded subset ofR

n with a boundary that is Lipschitz-continuous in t
sense of Adams [1] or Nec̆as [10], the setU being locally on the same side of its boundary. IfU is a domain inRn,
the spaceC1(U ;R

m) consists of all vector-valued mappingsχ ∈ C1(U ;R
m) that, together with all their partia

derivatives of the first order, possess continuous extensions to the closureU of U . The spaceC1(U ;R
m) thus also

consists of restrictions toU of all mappings in the spaceC1(Rn;R
m) (for a proof, see, e.g., [13] or [7]).

Latin indices and exponents henceforth range in the set{1,2,3} save when they are used for indexing sequen
Greek indices and exponents range in the set{1,2}, and the summation convention is used in conjunction with th
rules.

The notations(aαβ), (aαβ), (b
β
α), and(gij ) respectively designate matrices inM

2 andM
3 with components

aαβ, aαβ, b
β
α , andgij , the index or exponentα and the indexi designating here the row index.

Complete proofs of the results announced in this Note are found in [3].

2. A nonlinear Korn inequality on a surface

Our main result is anonlinear Korn inequality on a surface(Theorem 2.4), the proof of which relies on seve
preliminaries, a crucial one being the followingnonlinear Korn inequality on an open subset inRn recently estab
lished by Ciarlet and Mardare [6]. Its long, and sometimes technical, proof hinges in particular on a funda
‘geometric rigidity lemma’ due to Friesecke et al. [9] and on a general methodology reminiscent to that
Ciarlet and Laurent [4]. See also Reshetnyak [12] for related results.

Theorem 2.1. Let Ω be a domain inRn. Given any mappingΘ ∈ C1( �Ω;R
n) satisfyingdet∇Θ > 0 in �Ω , there

exists a constantC(Θ) with the following property: Given any mapping̃Θ ∈ H 1(Ω;R
n) satisfyingdet∇Θ̃ > 0

a.e. inΩ , there exist a vectorb = b(Θ̃,Θ) ∈ R
n and a matrixR = R(Θ̃,Θ) ∈ O

n+ such that∥∥(b + RΘ̃) − Θ
∥∥

H1(Ω;Rn)
� C(Θ)

∥∥∇Θ̃
T∇Θ̃ − ∇ΘT∇Θ

∥∥1/2
L1(Ω;Sn)

.

The next two lemmas show that some classical definitions and properties pertaining to surfaces inR
3 still hold

under less stringent regularity assumptions than the usual ones (these definitions and properties are tra
given and established under the assumptions that the immersions denotedθ in Lemma 2.2 and̃θ in Lemma 2.3
belong to the spaceC2(�ω;R

3)). For this reason, we shall continue to use the classical terminology, e.g., n
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2.2.
vector field (fora3 or ã3), or first, second, and third fundamental forms (for(aαβ) or (ãαβ), (bαβ) or (b̃αβ), and
(cαβ) or (c̃αβ)), etc. Ify = (yα) designates the generic point in a domainω in R

2, we let∂α := ∂/∂yα .

Lemma 2.2. Letω be a domain inR2 and letθ ∈ C1(�ω;R
3) be an immersion such thata3 := a1∧a2|a1∧a2| ∈ C1(�ω;R

3),
whereaα := ∂αθ . Then the functions

aαβ := aα · aβ, bαβ := −∂αa3 · aβ, bσ
α := aβσ bαβ, cαβ := ∂αa3 · ∂βa3,

where(aαβ) := (aαβ)−1, belong to the spaceC0(�ω ), andbαβ = bβα . Define the mappingΘ :�ω × R → R
3 by

Θ(y, x3) := θ(y) + x3a3(y) for all (y, x3) ∈ �ω × R.

ThenΘ ∈ C1(�ω × R;R
3). Furthermore,

det∇Θ(y, x3) = √
a(y)

{
1− 2H(y)x3 + K(y)x2

3

}
for all (y, x3) ∈ �ω × R,

where the functions

a := det(aαβ) = |a1 ∧ a2|2, H := 1

2

(
b1

1 + b2
2

)
, K := b1

1b
2
2 − b2

1b
1
2

belong to the spaceC0(�ω ). Finally, let

(gij ) := ∇ΘT∇Θ .

Then the functionsgij = gji belong to the spaceC0(�ω × R) and they are given by

gαβ(y, x3) = aαβ(y) − 2x3bαβ(y) + x2
3cαβ(y) and gi3(y, x3) = δi3

for all (y, x3) ∈ �ω × R.

Sketch of proof. Since the symmetric matrices(aαβ(y)) are positive-definite at all pointsy ∈ �ω, the inverse ma
trices(aαβ(y)) are well defined and also positive-definite at all pointsy ∈ �ω, and the functionsaαβ belong to the
spaceC0(�ω ). Therefore the functionsbσ

α are well-defined and they also belong to the spaceC0(�ω ).
The symmetrybαβ = bβα is clear ifθ ∈ C2(�ω;R3) sincebαβ = a3 · ∂αaβ in this case. As shown in the proof o

Theorem 3 of Ciarlet and Mardare [5], this symmetry still holds under the weaker assumptions of Lemma
Thanks to the relations∂α(a3 · a3) = 0, the classical formulas of Weingarten, viz.,

∂αa3 = −bσ
αaσ ,

still hold under the present assumptions. The expressions giving the functions det∇Θ andgij then follow from
this observation. �
Lemma 2.3. Let ω be a domain inR2 and let there be given a mappingθ̃ ∈ H 1(ω;R

3) such thatã1 ∧ ã2 �= 0 a.e.
in ω, whereãα := ∂α θ̃ , and such that

ã3 := ã1 ∧ ã2

|ã1 ∧ ã2| ∈ H 1(ω;R
3).

Then the functions

ãαβ := ãα · ãβ, b̃αβ := −∂α ã3 · ãβ, c̃αβ := ∂α ã3 · ∂β ã3

are well defined a.e. inω, they belong to the spaceL1(ω), andb̃αβ = b̃βα . Define the mapping̃Θ : ω × R → R3 by

Θ̃(y, x3) := θ̃(y) + x3ã3(y) for almost all(y, x3) ∈ ω × R.

ThenΘ̃ ∈ H 1(ω × ]−δ, δ[;R3) for anyδ > 0. Furthermore,

det∇Θ̃(y, x ) = √
ã(y)

{
1− 2H̃ (y)x + K̃(y)x2} for almost all(y, x ) ∈ ω × R,
3 3 3 3
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where

ã := det(ãαβ) = |ã1 ∧ ã2|2, H̃ := 1

2

(
b̃1

1 + b̃2
2

)
, K̃ := b̃1

1b̃
2
2 − b̃2

1b̃
1
2, b̃σ

α := ãβσ b̃αβ,

and(ãαβ) := (ãαβ)−1. Finally, let

(g̃ij ) := ∇Θ̃
T∇Θ̃ a.e. inω × R.

Then the functions̃gij = g̃j i belong to the spaceL1(ω × ]−δ, δ[) for anyδ > 0 and they are given by

g̃αβ(y, x3) = ãαβ(y) − 2x3b̃αβ(y) + x2
3 c̃αβ(y) and g̃i3(y, x3) = δi3

for almost all(y, x3) ∈ ω × R.

Sketch of proof. The proof is analoguous to that of Lemma 2.2. The symmetryb̃αβ = b̃βα again follow from
Theorem 3 of [5]. Note that, although the functionsã, H̃ , K̃ andb̃σ

α are well defined a.e. inω under the assumption
of Lemma 2.3, they do not necessarily belong to the spaceL1(ω). �

We now state the announcednonlinear Korn inequality on a surface. The notations are the same as those
Lemmas 2.2 and 2.3.

Theorem 2.4. Let there be given a domainω in R
2, an immersionθ ∈ C1(�ω;R

3) such thata3 ∈ C1(�ω;R
3), and

ε > 0.
Then there exists a constantc(θ , ε) with the following property: Given any mapping̃θ ∈ H 1(ω;R

3) such that
ã1 ∧ ã2 �= 0 a.e. inω, ã3 ∈ H 1(ω;R

3), and

|H̃ | � 1

ε
and K̃ � − 1

ε2
a.e. inω,

there exist a vectorb := b(θ , θ̃ , ε) ∈ R
3 and a matrixR = R(θ , θ̃ , ε) ∈ O

3+ such that∥∥(b + Rθ̃) − θ
∥∥

H1(ω;R3)
+ ε‖Rã3 − a3‖H1(ω;R3)

� c(θ , ε)
{∥∥(ãαβ − aαβ)

∥∥1/2
L1(ω;S2)

+ ε1/2
∥∥(b̃αβ − bαβ)

∥∥1/2
L1(ω;S2)

+ ε
∥∥(c̃αβ − cαβ)

∥∥1/2
L1(ω;S2)

}
.

Sketch of proof. Without loss of generality, we assume thatε � 1. Let the mappingsΘ : �ω × R → R
3 and

Θ̃ :ω×R → R
3 be constructed as in Lemmas 2.2 and 2.3 from the mappingsθ :�ω → R

3 andθ̃ :ω → R
3 appearing

in Theorem 2.4. Then there exists a constantδ(θ) > 0 such that

det∇Θ > 0 in �Ω and det∇Θ̃ > 0 a.e. inΩ,

whereΩ = Ω(θ , ε) := ω × ]−δ(θ)ε, δ(θ)ε[.
Theorem 2.1 then shows that there exists a constantc0(θ , ε) with the following property: Given anyε > 0 and

given any mappingsθ and θ̃ satisfying the assumptions of Theorem 2.4, there exist a vectorb := b(θ , θ̃ , ε) ∈ R
3

and a matrixR = R(θ , θ̃ , ε) ∈ O
3+ such that∥∥(b + RΘ̃) − Θ

∥∥
H1(Ω;R3)

� c0(θ , ε)
∥∥(g̃ij − gij )

∥∥1/2
L1(Ω;S3)

.

The rest of the proof consists in showing that there exists constantsc1(θ) andc2(θ) such that∥∥(b + RΘ̃) − Θ
∥∥

H1(Ω;R3)
� c1(θ)ε1/2{∥∥(b + Rθ̃) − θ

∥∥
H1(ω;R3)

+ ε‖Rã3 − a3‖H1(ω;R3)

}
,

and
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∥∥(g̃ij − gij )
∥∥1/2

L1(Ω;S3)

� c2(θ)ε1/2{∥∥(ãαβ − aαβ)
∥∥1/2

L1(ω;S2)
+ ε1/2

∥∥(b̃αβ − bαβ)
∥∥1/2

L1(ω;S2)
+ ε

∥∥(c̃αβ − cαβ)
∥∥1/2

L1(ω;S2)

}
.

The announced inequality then follows withc(θ , ε) := c0(θ , ε)c1(θ)−1c2(θ). �

3. Commentary

If a mapping θ̃ :ω → R
3 is a smooth immersion, the associated functionsH̃ and K̃ simply represent the

mean, andGaussian, curvaturesof the surfacẽθ(ω). It is well known that these functions are also given byH̃ =
1
2( 1

R̃1
+ 1

R̃2
) andK̃ = 1

R̃1R̃2
, whereR̃α are theprincipal radii of curvaturealong the surfacẽθ(ω) (with the usual

convention that|Rα(y)| may take the value+∞ at some pointsy ∈ ω).
It is then easily seen that the assumptions|H̃ | � 1

ε
andK̃ � − 1

ε2 in ω made in Theorem 2.4 imply that|R̃α| � cε

in ω and that, conversely,|R̃α| � ε in ω implies that|H̃ | � d
ε

and K̃ � − d

ε2 in ω, for some ad hoc numerica

constantsc andd . Hence the assumptions made on the mappingsθ̃ in Theorem 2.4 have a very simple geomet
interpretation: they mean thatthe principal radii of curvature of all the ‘admissible’ surfacesθ̃(ω) must stay
uniformly away from zero. Naturally, such principal radii of curvature are possibly understood only in a genera
sense, viz., as the inverses of the eigenvalues of the associated matrix(b̃

β
α ).

Let there be given a mapping̃θ ∈ H 1(ω;R3) such thatã1 ∧ ã2 �= 0 a.e. inω and ã3 ∈ H 1(ω;R3). Then a
mappingθ̂ :ω → R

3 is said to beproperly isometrically equivalentto the mapping̃θ if there exist a vectorb ∈ R
3

and a matrixR ∈ O
3+ such thatθ̂ = b + Rθ̃ . If this is the case, then̂θ ∈ H 1(ω;R

3), â1 ∧ â2 �= 0 a.e. inω,

and â3 ∈ H 1(ω;R
3) (with self-explanatory notations), and the two surfacesθ̃(ω) and θ̂(ω) share the same thre

fundamental forms in the spaceL1(ω;S
2).

One application of the key inequality of Theorem 2.4 is then the following result ofsequential continuity fo
surfaces: Let θk ∈ H 1(ω;R

3), k � 1, be mappings with the following properties: The vector fields normal to
surfacesθk(ω) are well defined a.e. inω and they also belong to the spaceH 1(ω;R

3), there exists a constantε > 0
such that the principal radii of curvaturesRk

α of the surfacesθk(ω) satisfy|Rk
α| � ε > 0 a.e. inω for all k � 1, and

finally,(
ak
αβ

)−−→
k→∞(aαβ),

(
bk
αβ

)−−→
k→∞(bαβ),

(
ck
αβ

)−−→
k→∞(cαβ) in L1(ω;S

2),

where(aαβ), (bαβ), (cαβ) are the three fundamental forms of a surfaceθ(ω), whereθ ∈ C1(�ω;R
3) is an immersion

satisfyinga3 ∈ C1(�ω;R
3). Thenthere exist mappingŝθ

k
that are properly isometrically equivalent to the mappin

θk , k � 1, such that

θ̂
k −−→

k→∞ θ and âk
3 −−→

k→∞a3 in H 1(ω;R
3).

Such a sequential continuity property generalizes that previously obtained by Ciarlet [2] and by Ciar
Mardare [8] and Szopos [11], for the topologies of the spacesCm(ω), andCm(�ω ), respectively.
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