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Abstract

In this Note we study solutions, possibly unbounded and sign-changing, of the equation−�u = |u|p−1u on unbounded domain
of R

N with N � 2 andp > 1. We prove some Liouville-type results and a classification theorem forC2 solutions belonging to on
of the following classes: stable solutions, finite Morse index solutions and solutions which are stable outside a compac
also extend, to smooth coercive epigraphs, the well-known results of Gidas and Spruck concerning non-negative soluti
considered equation.To cite this article: A. Farina, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Résultats de type Liouville pour des solutions de−�u = |u|p−1u dans des domaines non-bornés deRN . Cette Note porte
sur l’étude des solutions, éventuellement non-bornées et de signe quelconque, de l’équation−�u = |u|p−1u dans des domaine
non-bornés deRN avecN � 2 etp > 1. Nous démontrons des résultats de type Liouville ainsi que des théorèmes de class
pour les solutions régulières appartenant à une des classes suivantes : solutions stables, solutions d’indice de Morse fini
stables à l’extérieur d’un compact. Nous étendons aussi, au cas d’un épigraphe coercif régulier, les célèbres résultats
Spruck concernant les solutions positives de l’équation considérée.Pour citer cet article : A. Farina, C. R. Acad. Sci. Paris, Ser. I
341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

This Note is devoted to the study of solutions (possibly unbounded and sign-changing) of the semilinear partia
differential equation :

−�u = |u|p−1u in Ω, (1)

wherep > 1, Ω is an unbounded domain ofR
N with N � 2.
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There is an extensive literature on this type of equations on bounded domains. We refer to [1,3,12,13] and
erences therein. Our purpose is to consider this problem in the whole space or on some unbounded domain
spaces and coercive epigraphs. More specifically, we prove some Liouville-type results as well as a classifica
orem for solutionsu ∈ C2(Ω) of (1) belonging to one of the following classes (see definition below): stable solu
finite Morse index solutions, solutions which are stable outside a compact set ofΩ and non-negative solutions.

Eq. (1) naturally arises both in physics and in geometry. Furthermore, Liouville-type results play a crucial
obtain a prioriL∞-bounds for solutions of semilinear boundary value problems in bounded domains (see [9]
case of positive solutions and [2] for solutions having finite Morse index). The proofs of our results will app
the forthcoming work [7]. This paper also contains some further results concerning qualitative properties of s
of (1) as well as some extensions to the non-autonomous case.

2. Main results

In order to state our results we need to recall the following:

Definition 2.1.We say that a solutionu of (1) belonging toC2(Ω)

• is stableif:

∀ψ ∈ C1
c (Ω) Qu(ψ) :=

∫
Ω

|∇ψ |2 − p|u|p−1ψ2 � 0,

• hasMorse index equal toK � 1 if K is the maximal dimension of a subspaceXK of C1
c (Ω) such thatQu(ψ) < 0

for anyψ ∈ XK \ {0},
• is stable outside a compact setK of Ω if Qu(ψ) � 0 for anyψ ∈ C1

c (Ω \K).

Remark 1. Any finite Morse index solutionu is stable outside a compact set ofΩ .

Our main results are:

Theorem 2.2.Letu ∈ C2(RN) be astablesolution of(1) with:{
1< p < +∞ if N � 4,

1< p � N
N−4 if N > 4.

Thenu ≡ 0.

Remark 2.Note that the exponentN
N−4 (= +∞ if N � 4) is larger than the classical critical exponentN+2

N−2 (= 2� −1)

whenN � 3.

Theorem 2.3.Letu ∈ C2(RN) be a solution of(1) which isstable outside a compact setof R
N . Suppose{

1< p < +∞ if N � 2,

1< p < N+2
N−2 if N > 2,

thenu ≡ 0. On the other hand, ifN > 2 andp = N+2
N−2 then∫

RN

|∇u|2 =
∫

RN

|u|2N/(N−2) < +∞.

Remark 3. (i) Theorem 2.3 is sharp. Indeed, for anyN � 3 the functionu(x) = (
√

N(N−2)

1+|x|2 )(N−2)/2 solves Eq. (1)

with the classical critical exponentp = N+2
N−2, and is stable outside a large ball centered at the origin using Ha

inequality.
(ii) Theorem 2.3 improves upon the Liouville-type result proved in [2] where solutions are assumed to b

bounded and with finite Morse index (with 1< p < N+2 if N > 2, p < +∞ if N = 2).

N−2
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The proofs of the above theorems are based on the following crucial proposition.

Proposition 2.4.Letu ∈ C2(Ω) be astablesolution of(1) with p > 1. Then, for anym � max{p+1
p−1,2} there exists a

constantCp,m > 0, depending only onp andm, such that:

{
ψ ∈ C2

c (Ω), |ψ | � 1 in Ω
} �⇒

∫
Ω

(|∇u|2 + |u|p+1)ψ2m � Cp,m

∫
Ω

(|∇ψ |2 + |ψ ||�ψ |)(p+1)/(p−1)
.

The next result concerns the complete classification of entire radial solutions of(1) which are stable outside
compact set ofRN . The proof is based on a combination of Hardy’s inequality, Theorem 2.3 and some well
results about positive smooth entire radial solutions of Eq.(1) (see for instance [8,10,11,14]).

Theorem 2.5.Let u ∈ C2(RN) be a radial solution(u 	≡ 0) of (1) which isstable outside a compact setof R
N . Then

u does not change sign(i.e. eitheru > 0 or u < 0 everywhere).
Moreover only two cases occur:

(a) N � 3, p = N+2
N−2 , u(x) = ε(

λ
√

N(N−2)

λ2+|x|2 )(N−2)/2 with λ > 0, ε ∈ {−1,1},
(b) N � 11, p � pc := (N−2)2−4N+8

√
N−1

(N−2)(N−10) , u is stableand of the form:

∀x ∈ R
N uα(x) = εα2/(p−1)v

(
α|x|)

with α > 0, ε ∈ {−1,1}. The profilev satisfies: v(0) = 1, v > 0, v′ < 0 in R
+∗ .

Remark 4. Note thatpc := (N−2)2−4N+8
√

N−1
(N−2)(N−10) > N

N−4 .

In this regard we mention the recent paper [4], where the authors establish that any smoothbounded stable radia
entire solution of−�u = f (u) is constant ifN � 10 andf is a C1 function satisfying a generic nondegenera
condition.

The next theorem deals with non-negative solutions of(1). It extends the celebrated results of Gidas and Sp
[9,10] to the case where the unbounded domainΩ is a coercive epigraph. Recall that a domainΩ is a smooth
coercive epigraphif Ω := {(x′, xN) ∈ R

N : ϕ(x′) < xN } whereϕ belongs toC2,α
loc (RN−1,R) (0< α < 1) and satisfies

lim|x′|→+∞ ϕ(x′) = +∞.

Theorem 2.6.LetΩ be a smooth coercive epigraph. Letu ∈ C2(Ω) ∩ C0(Ω) be a solution of:


−�u = |u|p−1u in Ω,

u � 0 onΩ,

u = 0 on∂Ω,

(2)

with {
1< p < +∞ if N � 2,

1< p � N+2
N−2 if N > 2.

Thenu ≡ 0.

The proof of Theorem 2.6 is based on the observation that any solutionu of (2) is automatically stable; then
variant of Proposition 2.4 above implies the desired conclusion. To prove the stability ofu we proceed as follows
by the strong minimum principle eitheru ≡ 0, and thenu is stable, oru > 0 in Ω and then ∂u

∂xN
> 0 in Ω (by

Proposition II.1 of [6]). The latter property then easily implies the stability ofu.
Using similar arguments together with Theorem 2.2 we can prove:
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Theorem 2.7.Let Ω be either a half-space or a smooth coercive epigraph. Letu ∈ C2(Ω) ∩ C0(Ω) be abounded
non-negativesolution of:{−�u = up in Ω,

u = 0 on∂Ω,

with {
1< p < +∞ if N � 5,

1< p � N−1
N−5 if N > 5.

Thenu ≡ 0.

Remark 5. (i) Note that, whenΩ is a half-space, Theorem 2.7 improves upon a result proved in [5] where the exp
p was assumed to satisfy 1< p < N+1

N−3 if N > 3 (p < +∞ if N � 3).
(ii) Theorem 2.7 also holds for more general unbounded domains (see [7]).
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