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Abstract

Let A be aQ-linear pseudo-Abelian rigid tensor category. A notion of finiteness due to Kimura and (independently)
O'Sullivan guarantees that the ideal of numerically trivial endomorphism of an object is nilpotent. We generalize this result
to special Schur-finite objects. In particular, in the category of Chow motiv&sisfa smooth projective variety which satisfies
the homological sign conjecture, then Kimura-finiteness, a special Schur-finiteness, and the nilpo@HEW & x X )num
for all i (wheren = dim X) are all equivalentTo citethisarticle: A. Del Padrone, C. Mazza, C. R. Acad. Sci. Paris, Ser. | 341
(2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Finitude de Schur et nilpotence Soit.A une catégorie tensorielle rigide pseudo-abéli€@dmeaire. Une notion de finitude
de Kimura et (indépendamment) O’Sullivan garantit que I'idéal des endomorphismes numériquement triviaux d’'un objet est
nilpotent. Nous généralisons ce résultat a certains objets Schur-finis. En particulier, dans la catégorie des motifs d& Chow, si
est une variété projective lisse purement de dimensiqui satisfait la conjecture homologique de signe, alors la finitude de
Kimura, I'annulation du motif de&X par un certain foncteur de Schur, et la nilpotenc€€t#’ (X! x X’)num pour tousi, sont
équivalentesPour citer cet article: A. Del Padrone, C. Mazza, C. R. Acad. Sci. Paris, Ser. | 341 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Finiteness conditions in tensor categories

Let A be apseudo-Abelian tensor categone., a ‘®-catégorie rigide suf’ as in [1, 2.2.2] in which idempo-
tents split. We havé'-lineartracemaps tr: Engdi(A) — End4 (1) compatible withg-functors, andF-submodules
of numerically trivial morphisms\V' (A1, A2) := {f € Hom (A1, A2) | tr(f o g) =0, for all g € Hom4 (A, A7)}
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We assume that = End4 (1) and it containgQ. If F is a field,V is the biggest non-triviaR-ideal of A, and so
it contains any morphism annihilated by somefunctor.

Example 1[1, Chapter 4] AssumeF is a field. For any admissible equivalenseon algebraic cycles, motives
of smooth projective varieties over a figldvith coefficients inF form such a categoryl := M (k)r. If X isa
variety, we writeh (X) for its motive. For anyf € End4(h(X)), tr(f) = deg Iy - Ax) and thereforeV (h(X)) =

Zﬂim(x)(X x X) r,num (Numerically trivial correspondences of degree zero}-: I§ finer than homological equiva-
lence then any Weil cohomolog¥ factors through &-functor on.A, and t( ) = Zi(—l)-/Tr(f|H-/ (X)) by the
Lefschetz formula. ‘

Recall that the partitions of an integern give a complete set of mutually orthogonal central idempotents
d), = d”:l"'!VA Y s, x1(0)o inthe group algebr@ X, (see [4]). We define an endofunctor drby settings;, (A) =
d, (A®"). This is a multiple of the classical Schur functor corresponding o particular, we define SyhiA) =
Smy(A) and A" (A) = San(A). The following definitions are directly inspired by [3,7] (see [2,6,8] for further

reference).

Definition 1.1. An objectA of A is Schur-finite if there is a partitioh such thatS, (A) = 0. If S, (A) = 0 with A
of the form(n) (respectivelyr = (1")) then A is called odd (respectively, even). We say thas Kimura-finite if
A=A, @ A_ with A, even andA_ odd.

Every Kimura-finite object is Schur-finite, but the converse fails, for example, in the category of super-
representations dBL(p|q). In [7, 7.5] and [2, 9.1.14] it was proven thatAf is a Kimura-finite object then the
ideal A/ (A) is nilpotent.

In the case of Example 1, an interesting consequence of the nilpoteniéérdf is that a summand/ of M
is zero if and only if its cohomology is zero (the idempotent definihgnust then be nilpotent). The nilpotency
was used in [6, Theorem 7] to show the equivalence of Bloch’s conjecture for a smooth projective Xunfdhe
p¢ = 0 and the Kimura-finiteness of the motive Xf improving [7, 7.7].

Albeitin general Schur-finiteness is not sufficient to get the nilpotengy ©f) (see [2, 10.1.1]), we will identify
additional conditions which imply the nilpotency. In the category of motives we will show that for a motive which
is Kimura-finite modulo homological equivalence, the Kimura-finiteness modulo rational equivalence is equivalent
to the Schur-finiteness for a particular rectangle.

2. Atechnical result

Theorem 2.1.Suppose tha$, (A) = 0 for a partition > of n > 2 with a, rows andb, columns. Let :=a; +b; —1
be the length of its biggest hookandr :=n — s. Assume that either is a hook or that there is g € End4(A)
with tracer :=tr(g) =--- =tr(g), andr ¢ {—(by, — 2), ..., a5 — 2}. Thenf°6~D = 0 for each f € N'(A), and
soN(A) is nilpotent.

Proof. The last statement follows from [2, 7.2.8§/(4)2 "~1=0.

Foro € X, we index the corresponding decompositior{&f. . ., n} into disjoint cyclesys, ..., y, so that the
support ofy;1 contains 1; moreover we defifieto be the order of the cyclg, andL = L(o) := max{/;} to be the
maximum length of the cycles of.

As S, (A)=0we have) | x)(0)-00 f1i®---® f,=0foranyfi,..., f, € Ends(A). By the Murnaghan—
Nakayama rule (see [4, Problem 4.45))(c) =0 if L(0) > s. Hence [2, 7.2.6] wittd; = --- = A, = A, gives
that in Ends(A)
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> x.(0) 1o f, =0,
oeX,. L(o)<s
wheref,, = fyirl(l) 0-++0 fru o f1 lo := ]_[(fzzta,j. andt, ; :=tr(fyjz_,71(kj) o0 fyiky o fk;) with k; any
element in the support of; (if Iy =n, i.e.q =1, thenz, = 1).
Setfi:=Idg and fo =--- = f; := f (still no restrictions onfs+1, ..., fu). If Supp(y1) € {1, ..., s}, not all of
the f’s are in the compositioif,, , hence at least one of them must appear in a tra¢%@r_1(kj) 00 fyitk;) © fi;)-

But f is numerically trivial, sa, = 0 for any suchr, and

0= 2 XA(‘T)'fa'fn:( > X)L(U)-lcr)fo(x1)=x.f°(51)’

oeXy: Supfly))={1,....s} oeX,: Suppyn={1,....s}

wherex := 3" .= . suppyn=(1....s} X.(0) - 1o € F. Itis enough to show 7 0 for some choice of th¢;’s.

If » =0thenir =v = (n — j, 1/) isitself a hooky, = 1 for anys with /1 = n and by [4, Exercise 4.16] is just
(n — 1)!(—1)/ %0, hence\ (A) is nilpotent.

If A is not a hook lets := A \ v. The elementx € F is a sum ovelr = y; o ¢’ such thaty; is ans-cycle
of {1,...,s} and o’ is a permutation ofs + 1,...,n}, so by Murnaghan—-Nakayamg. (¢) = x;\»(¢’), and
x = (—1)%~L|{s — cycles of £, }| Za,ezr xs(c’) - 1,. Thus we are reduced to study elements of the form

oeX,

q
Y6 81,8 =Y x5(0) - [ [ 1o
j=1

where we can choose freedy, ..., g, € Ends(A).

Take g € End4(A) as in the hypothesis, thens; g....,8) = Y x5, xs(0) - 11V %l is the polynomial
in r = tr(g) called thecontent polynomiabf §. It decomposes as(s; g) = xs(ldx,) - ]'[(i’j)eg(t + j —1i), then
v(@;g)=0ifand only if t((g) € {—(bs — 1), ...,as — 1} C {—(b) — 2), ..., a) — 2}. By hypothesis, there is a
such thaty(8; g) # 0, which implies thatc # 0, which in turn implies thaif is nilpotent. Hence the theorem is
proven. O

Remark 1 (B. Kahn. The existence of g € End4(A) with tr(g) # 0 is not enough to ensure the nilpotency of
N (A) with A Schur-finite. In [2, 10.1.1] it is exhibited a non-zero Schur-finite objgatith N'(A") = End4(A"):
it suffices to look atd := A’ @ 1".

Conjecture 2.2.From numerical evidencf®] we conjecture a stronger version of Theor2rh Let A be an object
with two endomorphisms; and 2 such thata :=tr(;ry) = tr(nfi) forall i, b :=tr(mp) = tr(ngf) for all j, and
tr(zy o my’) =0 for all i and j. If S;(A) =0 wherex 5 (b + 2)F2, theny(A \ v; a1y + apm2) # 0 (@s a
polynomial ina; anday) and henceV'(A) is nilpotent.

3. Motives and nilpotency

Let now A be the category of Chow motive ai(k)g (Example 1), letd be any Weil cohomology, and |t
be a smooth projective variety. The cohomold@yX) is a super vector space of dimensi@hy, dogq), and we set
AHx) = ((dodd + 1)%evt1y (the rectangle withlogg+ 1 columns andley + 1 rows). By [3, 1.9],S,(H (X)) # 0 if
and only ifA 2 Ap(x). Hence, Sy (h(X)) #0if A 2 Amx). S0S,(h(X)) =0 implies thath D Ax(x).
Recall the ‘homological sign conjecture’ (due to Jannsen, see [1, 5.1.3]): we say Haditsfies the conjecture
C*(X) if the projections on the even and the odd part of the cohomology are algebraic. This conjecture is stable
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under products, and it holds true, with respect to classical conomologies, for Abelian varieties and smooth projec-
tive varieties of dimension at most two. It can be shown thiatX) is equivalent to the Kimura-finiteness of the
motive of X modulo homological equivalence.

Proposition 3.1.Let X be a smooth projective variety, and lebe a partition with at mosfey + 1 rows ordopgq+ 1
columns. IS, (h(X)) = 0 (and hence. D Ax(x)) and C*(X) holds, thenV (h(X)) is nilpotent. Moreover, if( is
a surface withp, = 0, Bloch’s conjecture holds foX.

Proof. By C*(X) there are two cycles, andn_ inducing the projections on the even and odd cohomology.
Thendey =tr(my) = tr(nf) for all i, and—dogg = tr(r_) = tr("’) for all j. Then eitherr, or 7_ satisfies the
condition of Theorem 2.1, and therefok&f (X)) is nilpotent. Bloch’s conjecture is now a formal consequence of
[7,7.6and 7.7]. O

Theorem 3.2.Let X be a smooth projective variety. Und€r"(X) the following are equivalent
1) h(X) is Kimura-finite  2) Sy, (h(X)) =0; 3) N(H(X™)) is nilpotent for alln > 1.

Proof. Itis easy to show that2s 2. For 3= 1 we proceed as follows. AST(X) holds andV/ (h(X)) is nilpotent,
then there exist two motive¥ ; and X_ whose cohomologies are exactly the even and the odd paft &f). It

iS now easy to prove that(X) = M, & M_ with M, even andM_ odd because it will be enough to check it in
cohomology. We need to verify2 3. Assume thas; , ,, (h(X)) = 0. From the proof of [3, Corollary 1.13], we
find thatS;. ,; yn, (H(X™)) = Sy, (H(X)®") = 0. SinceC ™ (X") holds true, Proposition 3.1 gives thaf(h(X"))

is nilpotent. O

If Conjecture 2.2 is true, then Bloch’s conjecture holds for any smooth projective s¥fagth p, = 0 such
thatS,\(b(X)) =0fora 2 (dogd(X) + 2)dev(x)+2'
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