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Abstract

Let A be a Q-linear pseudo-Abelian rigid tensor category. A notion of finiteness due to Kimura and (independ
O’Sullivan guarantees that the ideal of numerically trivial endomorphism of an object is nilpotent. We generalize thi
to special Schur-finite objects. In particular, in the category of Chow motives, ifX is a smooth projective variety which satisfi
the homological sign conjecture, then Kimura-finiteness, a special Schur-finiteness, and the nilpotency ofCHni(Xi × Xi)num
for all i (wheren = dimX) are all equivalent.To cite this article: A. Del Padrone, C. Mazza, C. R. Acad. Sci. Paris, Ser. I 341
(2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Finitude de Schur et nilpotence.SoitA une catégorie tensorielle rigide pseudo-abélienneQ-lineaire. Une notion de finitud
de Kimura et (indépendamment) O’Sullivan garantit que l’idéal des endomorphismes numériquement triviaux d’un o
nilpotent. Nous généralisons ce résultat à certains objets Schur-finis. En particulier, dans la catégorie des motifs de CX

est une variété projective lisse purement de dimensionn qui satisfait la conjecture homologique de signe, alors la finitud
Kimura, l’annulation du motif deX par un certain foncteur de Schur, et la nilpotence deCHni(Xi × Xi)num pour tousi, sont
équivalentes.Pour citer cet article : A. Del Padrone, C. Mazza, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Finiteness conditions in tensor categories

Let A be apseudo-Abelian tensor category, i.e., a ‘⊗-catégorie rigide surF ’ as in [1, 2.2.2] in which idempo
tents split. We haveF -lineartracemaps tr : EndA(A) → EndA(1) compatible with⊗-functors, andF -submodules
of numerically trivial morphismsN (A1,A2) := {f ∈ HomA(A1,A2) | tr(f ◦ g) = 0, for all g ∈ HomA(A2,A1)}.

E-mail addresses:delpadro@dima.unige.it (A. Del Padrone), carlo@math.ias.edu (C. Mazza).
1631-073X/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2005.07.010
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We assume thatF = EndA(1) and it containsQ. If F is a field,N is the biggest non-trivial⊗-ideal ofA, and so
it contains any morphism annihilated by some⊗-functor.

Example 1 [1, Chapter 4]. AssumeF is a field. For any admissible equivalence∼ on algebraic cycles, motive
of smooth projective varieties over a fieldk with coefficients inF form such a categoryA := M∼(k)F . If X is a
variety, we writeh(X) for its motive. For anyf ∈ EndA(h(X)), tr(f ) = deg(Γf · ∆X) and thereforeN (h(X)) =
Zdim(X)∼ (X × X)F,num (numerically trivial correspondences of degree zero). If∼ is finer than homological equiva
lence then any Weil cohomologyH factors through a⊗-functor onA, and tr(f ) = ∑

j (−1)j Tr(f |Hj(X)) by the
Lefschetz formula.

Recall that the partitionsλ of an integern give a complete set of mutually orthogonal central idempot
dλ := dimVλ

n!
∑

σ∈Σn
χλ(σ )σ in the group algebraQΣn (see [4]). We define an endofunctor onA by settingSλ(A) =

dλ(A
⊗n). This is a multiple of the classical Schur functor corresponding toλ. In particular, we define Symn(A) =

S(n)(A) and Λn(A) = S(1n)(A). The following definitions are directly inspired by [3,7] (see [2,6,8] for furt
reference).

Definition 1.1. An objectA of A is Schur-finite if there is a partitionλ such thatSλ(A) = 0. If Sλ(A) = 0 with λ

of the form(n) (respectively,λ = (1n)) thenA is called odd (respectively, even). We say thatA is Kimura-finite if
A = A+ ⊕ A− with A+ even andA− odd.

Every Kimura-finite object is Schur-finite, but the converse fails, for example, in the category of
representations ofGL(p|q). In [7, 7.5] and [2, 9.1.14] it was proven that ifA is a Kimura-finite object then th
idealN (A) is nilpotent.

In the case of Example 1, an interesting consequence of the nilpotence ofN (M) is that a summandN of M

is zero if and only if its cohomology is zero (the idempotent definingN must then be nilpotent). The nilpoten
was used in [6, Theorem 7] to show the equivalence of Bloch’s conjecture for a smooth projective surfaceX with
pg = 0 and the Kimura-finiteness of the motive ofX, improving [7, 7.7].

Albeit in general Schur-finiteness is not sufficient to get the nilpotency ofN (A) (see [2, 10.1.1]), we will identify
additional conditions which imply the nilpotency. In the category of motives we will show that for a motive w
is Kimura-finite modulo homological equivalence, the Kimura-finiteness modulo rational equivalence is equ
to the Schur-finiteness for a particular rectangle.

2. A technical result

Theorem 2.1.Suppose thatSλ(A) = 0 for a partitionλ of n � 2 with aλ rows andbλ columns. Lets := aλ +bλ −1
be the length of its biggest hookν, andr := n − s. Assume that eitherλ is a hook or that there is ag ∈ EndA(A)

with tracet := tr(g) = · · · = tr(g◦r ), and t /∈ {−(bλ − 2), . . . , aλ − 2}. Thenf ◦(s−1) = 0 for eachf ∈ N (A), and
soN (A) is nilpotent.

Proof. The last statement follows from [2, 7.2.8]:N (A)2s−1−1 = 0.
For σ ∈ Σn, we index the corresponding decomposition of{1, . . . , n} into disjoint cyclesγ1, . . . , γn so that the

support ofγ1 contains 1; moreover we defineli to be the order of the cycleγi , andL = L(σ) := maxi{li} to be the
maximum length of the cycles ofσ .

As Sλ(A) = 0 we have
∑

σ χλ(σ ) · σ ◦ f1 ⊗ · · · ⊗ fn = 0 for anyf1, . . . , fn ∈ EndA(A). By the Murnaghan–
Nakayama rule (see [4, Problem 4.45])χλ(σ ) = 0 if L(σ) > s. Hence [2, 7.2.6] withA1 = · · · = An = A, gives
that in EndA(A)
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∑
σ∈Σn: L(σ)�s

χλ(σ ) · tσ · fγ1 = 0,

wherefγ1 := f
γ

l1−1
1 (1)

◦ · · · ◦ fγ1(1) ◦ f1, tσ := ∏q

j=2 tσ,j , andtσ,j := tr(f
γj

lj −1
(kj )

◦ · · · ◦ fγj (kj ) ◦ fkj
) with kj any

element in the support ofγj (if l1 = n, i.e.q = 1, thentσ = 1).
Setf1 := IdA andf2 = · · · = fs := f (still no restrictions onfs+1, . . . , fn). If Supp(γ1) � {1, . . . , s}, not all of

thef ’s are in the compositionfγ1, hence at least one of them must appear in a trace tr(f
γj

lj −1
(kj )

◦· · ·◦fγj (kj )◦fkj
).

But f is numerically trivial, sotσ = 0 for any suchσ , and

0=
∑

σ∈Σn: Supp(γ1)={1,...,s}
χλ(σ ) · tσ · fγ1 =

( ∑
σ∈Σn: Supp(γ1)={1,...,s}

χλ(σ ) · tσ
)

f ◦(s−1) = x · f ◦(s−1),

wherex := ∑
σ∈Σn: Supp(γ1)={1,...,s} χλ(σ ) · tσ ∈ F . It is enough to showx �= 0 for some choice of thefi ’s.

If r = 0 thenλ = ν = (n− j,1j ) is itself a hook,tσ = 1 for anyσ with l1 = n and by [4, Exercise 4.16]x is just
(n − 1)!(−1)j �= 0, henceN (A) is nilpotent.

If λ is not a hook letδ := λ \ ν. The elementx ∈ F is a sum overσ = γ1 ◦ σ ′ such thatγ1 is an s-cycle
of {1, . . . , s} and σ ′ is a permutation of{s + 1, . . . , n}, so by Murnaghan–Nakayamaχλ(σ ) = χλ\ν(σ ′), and
x = (−1)aδ−1|{s − cycles ofΣn}|∑σ ′∈Σr

χδ(σ
′) · tσ . Thus we are reduced to study elements of the form

y(δ;g1, . . . , gr) :=
∑
σ∈Σr

χδ(σ ) ·
q∏

j=1

tσ,j ,

where we can choose freelyg1, . . . , gr ∈ EndA(A).
Take g ∈ EndA(A) as in the hypothesis, theny(δ;g, . . . , g) = ∑

σ∈Σr
χδ(σ ) · t |cycles ofσ | is the polynomial

in t = tr(g) called thecontent polynomialof δ. It decomposes asy(δ;g) = χδ(IdΣr ) · ∏
(i,j)∈δ(t + j − i), then

y(δ;g) = 0 if and only if tr(g) ∈ {−(bδ − 1), . . . , aδ − 1} ⊆ {−(bλ − 2), . . . , aλ − 2}. By hypothesis, there is ag
such thaty(δ;g) �= 0, which implies thatx �= 0, which in turn implies thatf is nilpotent. Hence the theorem
proven. �
Remark 1 (B. Kahn). The existence of ag ∈ EndA(A) with tr(g) �= 0 is not enough to ensure the nilpotency
N (A) with A Schur-finite. In [2, 10.1.1] it is exhibited a non-zero Schur-finite objectA′ with N (A′) = EndA(A′):
it suffices to look atA := A′ ⊕ 1n.

Conjecture 2.2.From numerical evidence[9] we conjecture a stronger version of Theorem2.1. LetA be an object
with two endomorphismsπ1 andπ2 such thata := tr(π1) = tr(π◦i

1 ) for all i, b := tr(π2) = tr(π◦j
2 ) for all j , and

tr(π◦i
1 ◦ π

◦j
2 ) = 0 for all i and j . If Sλ(A) = 0 whereλ �⊃ (b + 2)a+2, theny(λ \ ν;α1π1 + α2π2) �= 0 (as a

polynomial inα1 andα2) and henceN (A) is nilpotent.

3. Motives and nilpotency

Let nowA be the category of Chow motivesMrat(k)Q (Example 1), letH be any Weil cohomology, and letX

be a smooth projective variety. The cohomologyH(X) is a super vector space of dimension(dev, dodd), and we set
λH(X) := ((dodd+ 1)dev+1) (the rectangle withdodd+ 1 columns anddev + 1 rows). By [3, 1.9],Sλ(H(X)) �= 0 if
and only ifλ �⊃ λH(X). Hence,Sλ(h(X)) �= 0 if λ �⊃ λH(X). SoSλ(h(X)) = 0 implies thatλ ⊃ λH(X).

Recall the ‘homological sign conjecture’ (due to Jannsen, see [1, 5.1.3]): we say thatX satisfies the conjectur
C+(X) if the projections on the even and the odd part of the cohomology are algebraic. This conjecture i
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under products, and it holds true, with respect to classical cohomologies, for Abelian varieties and smooth
tive varieties of dimension at most two. It can be shown thatC+(X) is equivalent to the Kimura-finiteness of th
motive ofX modulo homological equivalence.

Proposition 3.1.LetX be a smooth projective variety, and letλ be a partition with at mostdev+1 rows ordodd+1
columns. IfSλ(h(X)) = 0 (and henceλ ⊃ λH(X)) andC+(X) holds, thenN (h(X)) is nilpotent. Moreover, ifX is
a surface withpg = 0, Bloch’s conjecture holds forX.

Proof. By C+(X) there are two cyclesπ+ andπ− inducing the projections on the even and odd cohomol
Thendev = tr(π+) = tr(π◦i+ ) for all i, and−dodd = tr(π−) = tr(π◦j

− ) for all j . Then eitherπ+ or π− satisfies the
condition of Theorem 2.1, and thereforeN (h(X)) is nilpotent. Bloch’s conjecture is now a formal consequenc
[7, 7.6 and 7.7]. �
Theorem 3.2.LetX be a smooth projective variety. UnderC+(X) the following are equivalent:

1) h(X) is Kimura-finite; 2) SλH(X)
(h(X)) = 0; 3) N (h(Xn)) is nilpotent for alln � 1.

Proof. It is easy to show that 1⇒ 2. For 3⇒ 1 we proceed as follows. AsC+(X) holds andN (h(X)) is nilpotent,
then there exist two motivesX+ andX− whose cohomologies are exactly the even and the odd part ofH(X). It
is now easy to prove thath(X) = M+ ⊕ M− with M+ even andM− odd because it will be enough to check it
cohomology. We need to verify 2⇒ 3. Assume thatSλH(X)

(h(X)) = 0. From the proof of [3, Corollary 1.13], w
find thatSλH(Xn)

(h(Xn)) = SλH(Xn)
(h(X)⊗n) = 0. SinceC+(Xn) holds true, Proposition 3.1 gives thatN (h(Xn))

is nilpotent. �
If Conjecture 2.2 is true, then Bloch’s conjecture holds for any smooth projective surfaceX with pg = 0 such

thatSλ(h(X)) = 0 for λ �⊃ (dodd(X) + 2)dev(X)+2.

Acknowledgements

This article was inspired by the preprint [5] by V. Guletskiı̆. Both authors would like to thank the Institut d
Mathématiques de Jussieu for hospitality while part of this manuscript was written. For financial support,
author would like to thank the Fondazione Carige and the second author would like to thank Sergio Se
(Honorary President of the Società Trentina Lieviti, Trento, Italy).

References

[1] Y. André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses (Panoramas and Synthese
Société Mathématique de France, Paris, 2004.

[2] Y. André, B. Kahn, Nilpotence, radicaux et structures monoïdales, Rend. Sem. Mat. Univ. Padova 108 (2002) 107–291, with an
by P. O’Sullivan.

[3] P. Deligne, Catégories tensorielles, Moscow. Math. J. 2 (2) (2002) 227–248. Dedicated to Yuri I. Manin on the occasion of his 65th
[4] W. Fulton, J. Harris, Representation Theory, Graduate Texts in Math., vol. 129, Springer-Verlag, New York, 1991. A first course, R

in Mathematics.
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