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Abstract

Let S be a smooth 2-codimensional real compact submanifold ofC
n, n > 2. We address the problem of finding a compact hyp

surfaceM, with boundaryS, such thatM \S is Levi-flat. We prove the following theorem. Assume that (i)S is nonminimal at every
CR point, (ii) every complex point ofS is flat and elliptic and there exists at least one such point, (iii)S does not contain comple
submanifolds of dimensionn − 2. Then there exists a Levi-flat(2n − 1)-subvarietyM̃ ⊂ C × C

n with negligible singularities and
boundarỹS (in the sense of currents) such that the natural projectionπ :C × C

n → C
n restricts to a CR diffeomorphism betwe

S andS̃. To cite this article: P. Dolbeault et al., C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Bords d’hypersurfaces Levi-plates dansCn. Soit S une sous-variété réelle, lisse. compacte, de codimension 2 deC
n, n > 2.

On considère le problème de l’existence d’une hypersurface compacteM, de bordS, telle queM \ S soit Levi-plate. On démontr
le théorème suivant : supposons que (i)S est non minimale en tout point CR, (ii) tout point complexe deS est plat et elliptique
et il en existe un au moins, (iii)S ne contient aucune sous-variété complexe de dimensionn − 2. Alors il existe une sous-variét
M̃ ⊂ C × C

n, à singularités négligeables, avec bordS̃ (au sens des courants) et telle quel la projection naturelleπ :C × C
n → C

n

donne un difféomorphisme CR entreS et S̃. Pour citer cet article : P. Dolbeault et al., C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Soit S une sous-variété réelle, lisse, compacte, de codimension 2 deC
n, n > 2. On considère le problème d

l’existence d’une hypersurface Levi-plate de bordS. Pourn = 2 ce problème a été étudié par plusieurs auteurs
[1,2,12,11,5,13]). Pourn > 2 le problème est surdéterminé. Une première condition nécessaire est que, au vo
d’un point CR,S ne soit pas minimale au sens de Tumanov [14]. Soit maintenantp ∈ S un point à tangence complex
Alors, pour un choix convenable des coordonnées holomorphes locales(z,w) ∈ C

n−1 × C, S est donnée par un
équationw = Q(z) + O(‖z‖3), oùQ est une formeR-bilinéaire, à valeurs complexes. On observe alors que siS est,

E-mail addresses:pido@ccr.jussieu.fr (P. Dolbeault), g.tomassini@sns.it (G. Tomassini), zaitsev@maths.tcd.ie (D. Zaitsev).
1631-073X/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2005.07.012
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localement au pointp, le bord d’une hypersurface Levi-plate, des coordonnées(z,w) comme ci-dessus existent tell
que la partie (1,1) deQ prend ses valeurs dans une droite réelle deC. On dit plat un tel point et plat et elliptiqu
si (z,w) peuvent être choisies de telle sorte queQ(z) soit une forme réelle définie positive. Le résultat principal
contenu dans le théorème suivant :

Théorème 0.1.Supposons que(i) S est non minimale en tout point CR; (ii) tout point complexe deS est plat et
elliptique et il en existe un au moins; (iii) S ne contient aucune sous-variété complexe de dimensionn − 2. Alors il
existe une sous-variété̃M ⊂ C × C

n, à singularités négligeables, avec bord̃S (au sens des courants) telle queM̃ \ S̃

soit Levi-plate et la projection naturelleπ :C × C
n → C

n donne un difféomorphisme CR entreS et S̃.

1. Introduction

Let S be a smooth 2-codimensional real compact submanifold ofC
n, n > 2. We address the problem of findin

a Levi-flat hypersurface with boundaryS. Forn = 2 the problem was studied by several authors (see e.g. [1,2,1
5,13]). The situation here turns out to be totally different from what it is inC

2. The first difference is that a bounda
of a hypersurface in general position is totally real inC

2 but no more such inCn with n > 2. Furthermore, if a surfac
S ⊂ C

2 is real-analytic, any real-analytic foliation ofS by real curves extends locally to a foliation ofC
2 by complex

curves and henceS locally bounds many possible Levi-flat hypersurfaces. On the other hand, in higher dime
a real-analytic submanifoldS ⊂ C

n of codimension 2 in general position does not even locally bound a Lev
hypersurfaceM .

In Section 2 we study the necessary local compatibility conditions needed for a 2-codimensional smo
submanifoldS ⊂ C

n to bound a Levi-flat hypersurface at least locally. First we observe that near a CR pointS must
be nowhere minimal i.e. all local CR orbits must be of positive codimension. Next we consider a complex poinp ∈ S

and local holomorphic coordinates(z,w) ∈ C
n−1 × C, vanishing atp, such thatS is locally given by the equatio

w = Q(z)+ O(|z|3), whereQ(z) is a complex valued quadratic form in the real coordinates(�z,�z) ∈ R
n−1 × R

n−1

or, equivalently, in(z, z̄). We observe that, ifS bounds a Levi-flat hypersurface,Q has to satisfy a certain flatne
condition, in which case we callp ‘flat’. We further call a flat pointp ∈ S ‘elliptic’ if Q(z) ∈ R+ for everyz �= 0.
A 2-codimensional submanifoldS ⊂ C

n can only have isolated elliptic flat complex points.
In our main result, we take these local necessary conditions as our assumptions and obtain a global co

There are no more global assumptions onS as it was the case inC2. There is the technical difficulty that the possib
Levi-flat hypersurface solving the boundary problem may have self-intersections producing singularities eve
large sets. We illustrate this phenomenon on the following example.

Example 1. Let S
2n−2 ⊂ C

n−1 × R ∼= R
2n−1 be the unit sphere and consider an immersionγ : [−1,1] → C with

γ (x) �= γ (−x) for all x �= 0. Then the imageS ⊂ C
n of S

2n−2 under the mapid × γ :Cn−1 × R → C
n−1 × C is a

submanifold of codimension 2 that locally bounds a Levi-flat hypersurface, image under the same map of ope
of the unit ballB2n−1 bounded byS2n−2 in C

n. The image of the ball itself can be singular at points(z, γ (x)) if there
exist pointsx′ �= x with γ (x) = γ (x′) whose set can be very large.

In view of this example we have to allow more general Levi-flat ‘hypersurfaces’ that are obtained as image
manifolds. It is clear that already the complex leaves may have singularities away from their boundaries. H
are led to the following real analogue of complex-analytic varieties.

Let X be a complex manifold endowed with a Hermitian metric. LetHd be thed-dimensional Hausdorff measu
onX. A closed subsetY of X is said to be ad-subvariety with negligible singularities, of class Ck , k ∈ N∪{∞}∪{ω},
if there exists a closed subsetσ of Y such thatHd(σ ) = 0 andY \ σ is an oriented reald-dimensional submanifol
of class Ck of X \ σ of locally finite Hd measure. The minimal setσ as above is called thesingular setof Y (scar
setaccording to Harvey and Lawson [9]) and RegY = Y \ σ its regular part. By integration on RegY , we define
a measurable, locally rectifiable current onX, denoted[Y ] and said to be theintegration currenton Y . The closed
setσ may be increased without changing[Y ]. A d-subvarietyY with negligible singularities is said to be CR,
CR dimensionh and CR codimensionm if there exists a closed subsetσ ′ ⊃ σ such thatHd(σ ′) = 0 andY \ σ ′ is
a CR submanifold of CR dimensionh and CR codimensionm. The classical definitions of CR geometry extend
d-subvarieties (and to currents [10]). A CRd-subvariety is said to beLevi-flat if its regular part is Levi-flat.
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Finally, we add a local assumption onS guaranteeing that all the CR orbits have the same dimension and
define a smooth foliation away from the complex points. We have:

Theorem 1.1.Let S ⊂ C
n, n > 2, be a compact connected smooth real2-codimensional submanifold such that t

following holds:

(i) S is nonminimal at every CR point;
(ii) every complex point ofS is flat and elliptic and there exists at least one such point;

(iii) S does not contain complex submanifolds of dimension(n − 2).

Then there exists a compact subvarietỹM ⊂ C × C
n with boundarỹS (in the sense of currents) such thatM̃ \ S̃ is

Levi-flat and the natural projectionπ :C × C
n → C

n restricts to a CR diffeomorphism betweenS̃ andS.

2. Local analysis and flatness conditions

Given a smooth submanifoldM of C
n we denoteHpM the complex tangent space toM at a pointp.

Let S be a smooth real submanifold of real codimension 2 inCn (not necessarily compact). We say thatS is a
locally flat boundaryat a pointp ∈ M if an open neighbourhood ofp in S locally bounds a Levi-flat hypersurfac
M ⊂ C

n. Assume thatS is a locally flat boundary and letp ∈ S be such thatS is CR nearp. Then, nearp, S is
either a complex hypersurface (in which case it is clearly a locally flat boundary) or a generic submanifold oC

n at
least at some points. In the second case being a locally flat boundary turns out to be a nontrivial condition fon � 3.
Indeed, suppose thatM ⊂ C

n is a Levi-flat hypersurface bounded by a generic submanifoldS. Consider the foliation
by complex hypersurfaces ofM where it extends smoothly to the boundary. Since the boundaryS is generic, it canno
be tangent to a complex leaf. Hence the leafMp of M throughp intersectsS transversally along a real hypersurfa
Sp ⊂ S. SinceHqS ⊂ HqM = TqMp for q ∈ Sp nearp, it follows thatHqSp = HqS for suchq. HenceS cannot be
minimal (in the sense of Tumanov [14]) atp with p being arbitrary generic smooth boundary point. In fact, it follo
thatSp is either a singleCRorbit of S or a union ofCRorbits.

Whenn = 2, Sp is totally real (i.e.HSp = {0}) and hence is obviously nowhere minimal. Ifn � 3, Sp cannot
be totally real for dimension reason and its ‘nowhere minimality’ becomes a nontrivial condition.S ⊂ C

n near a
complex pointp ∈ S (i.e. such thatTpS is a complex hyperplane inTpC

n), for suitable holomorphic coordinate
(z,w) ∈ C

n−1 × C vanishing atp, is locally given by an equation

w = Q(z) + O
(|z|3), Q(z) =

∑
1�i,j�n−1

(aij zizj + bij zi z̄j + cij z̄i z̄j ), (1)

where(aij ) and(cij ) are symmetric complex matrices and(bij ) is an arbitrary complex matrix. The formQ(z) can
be seen as a “fundamental form” ofS at p, however it is not uniquely determined (as a tensor too). A holomor
quadratic change of coordinates of the form(z,w) 
→ (z,w + ∑

a′
ij zizj ) results in adding(a′

ij ) to the matrix(aij ).
It can be easily seen that the matrices(bij ) and(cij ) transform as tensorsTpS × TpS → TpC

n/TpS under all biholo-
morphic changes of(z,w) preserving the form in (1).

2.1. A necessary condition at complex points

Clearly any symmetricC-valuedR-bilinear formQ on C
n can appear in Eq. (1). However we shall see that

condition onS to be a locally flat boundary atp implies a nontrivial condition onQ.
We callS flat at a complex pointp ∈ S if, in some (and hence in any) coordinates(z,w) as in (1), there exists

complex numberλ ∈ C such that
∑

bij zi z̄j ∈ λR for all z = (z1, . . . , zn−1).
If (bij ) is a Hermitian matrix,S as above is automatically flat atp; in casen = 2 the flatness always holds. But a

submanifoldS ⊂ C
3
z1,z2,w

given byw = |z1|2 + i|z2|2 + O(|z|3) is not flat at 0. Then:

Lemma 2.1.LetS ⊂ C
n be a locally flat boundary with complex pointp ∈ S. ThenS is flat atp.
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If S is flat, by making a change of coordinates(z,w) 
→ (z, λw), it is easy to make
∑

bij zizj ∈ R for all z.
Furthermore, by a change of coordinates(z,w) 
→ (z,w + ∑

a′
ij zizj ) we can choose the holomorphic term in (1)

be the conjugate of the antiholomorphic one and so make the whole formQ real-valued. We now assume thatS is
nonminimal in its generic points and flat at complex points. We then prove thatS is a locally flat boundary nearp
assuming in addition a certain positivity (ellipticity) condition. The latter condition is analogous to that for 2-su
in C

2.
Let p ∈ S be a flat point. We say thatp is elliptic if, in some (and hence in any) coordinates(z,w), the quadratic

form Q(z) is real and positive definite. By addingQ(z) andQ(iz) we see that the ellipticity implies that the mat
(bij ) is nonzero.

Remark 1. This definition generalizes the well-known notion of ellipticity, in the sense of Bishop [3], forn = 2. Note
thatS ⊂ C2 is always flat at any complex point. In general, it can be shown thatS is elliptic at a flat complex pointp
if and only if every intersectionL ∩ S with a complex 2-planeL throughp satisfyingL �⊂ TpS is elliptic in L ∼= C

2

in the sense of Bishop.

The simplest example ofS is the quadric ofC3, w = Q(z), whereQ is as in (1). In our case whenS is flat and
elliptic atp = 0, we can choose the coordinates(z,w) whereQ(z) is real and positive definite.

Lemma 2.2.Suppose that the quadricw = Q(z) is flat and elliptic at0. Then it is CR and nowhere minimal outside0,
and the CR orbits are precisely the3-dimensional ellipsoids given byw = const. The Levi form at the CR points
positive definite.

In particular, it follows that elliptic flat points are always isolated complex points. This property also hol
general 2-codimensional submanifoldsS ⊂ C

n as can be seen by comparingS with a corresponding approximatin
quadric.

For elliptic flat points, we now show that the above necessary conditions are in some sense sufficient forS to be a
locally flat boundary.

Proposition 2.3.Assume thatS ⊂ Cn (n � 3) is nowhere minimal at all its CR points and has an elliptic flat comp
point p. Then a neighbourhood ofp is foliated by compact real(2n − 3)-dimensional CR orbits and there exists
Lipschitz functionν, smooth and without critical points away fromp, having the CR orbits as the level surfaces.

3. Global consequences of the local flatness

We now consider a compact real 2-codimensional submanifoldS of C
n, n � 3.

3.1. Induced foliation by CR orbits

We use classical topological tools to obtain a description of the global structure of the foliation.

Proposition 3.1. Let S ⊂ C
n be a compact connected real2-codimensional submanifold such that the conditi

(i)–(iii) of Theorem1.1hold. ThenS is homeomorphic to the unit sphereS
2n−2 ⊂ C

n−1
z × Rx such that the comple

points are the poles{x = ±1} and the CR orbits inS correspond to the(2n − 3)-spheres given byx = const. In
particular, if Sell denotes the( finite) set of all elliptic flat complex points ofS, the open subsetS0 = S � Sell carries a
foliation F of classC∞ with 1-codimensional compact leaves.

The proof is based on Thurston’s stability theorem (see e.g. [4], Theorem 6.2.1).
We now return to our central question:When does a compact submanifoldS of C

n bounds a Levi-flat hypersu
faceM? From Proposition 3.1, we know that every CR orbit ofS is a connected compact maximally complex C
submanifold ofCn, n � 3, and hence, in view of the classical result of Harvey–Lawson [10], bounds a com
analytic subvariety. Thus, in order to findM , at least as a real “subvariety”, foliated by complex subvarieties, a na
way to proceed is to build it as a family of the solutions of the boundary problems for individual CR orbits. To
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we reduce the problem to the corresponding problem in a real hyperplane ofC
n+1. The latter case is treated in th

next section.

4. On boundaries of families of holomorphic chains withC∞ parameters

Here we extend to theC∞ case theCω solution of the boundary problem in a real hyperplane ofC
n [7]. As in [7]

we follow the method of Harvey–Lawson in [9], Section 3.
Notations:n � 4; z′′ = (z2, . . . , zn−1) ∈ C

n−2, ζ ′ = (x1, z
′′) ∈ R × C

n−2. Let E = R × C
n−1 = {y1 = 0} ⊂ C

n =
C × C

n−1, andk :E → Rx1, (x1; z′′; zn) 
→ x1. Forx0
1 ∈ Rx1, let Ex0

1
= k−1(x0

1) = {x1 = x0
1}.

Let N ⊂ E be a compact, (oriented) CR subvariety ofC
n of real dimension 2n − 4 and CR dimensionn − 3,

(n � 4), of classC∞, with negligible singularities (i.e. there exists a closed subsetτ ⊂ N of (2n − 4)-dimensional
Hausdorff measure 0 such thatN \ τ is a CR submanifold inE \ τ ). Assume thatN , as a current of integration,
d-closed and satisfies:

(H) there exists a closed subsetτ ′ ⊃ τ of N with H2n−4(τ ′) = 0 such that for everyz ∈ N � τ ′, N � τ ′ is a
submanifold transversal to the maximal complex affine subspace ofE throughz;

(H′) there exists a closed subsetL0 ⊂ Rx1 with H1(L0) = 0 such that for everyx0 ∈ k(N)�L0, the fiberk−1(x0)∩N

is connected. We shall fixL0 as above.

For everyx1 ∈ k(N), let Nx1 = N ∩ Ex1 and consider the pointsz ∈ Nx1 such that: (i) eitherz ∈ τ ; or (ii) Ex1 is
not transverse toN at z.

Let τ ′
x1

be the set of such points inNx1 andL := L0 ∪ {x1 ∈ R: H2n−5(τ ′
x1

) > 0}. Clearly,H1(L) = 0.

Theorem 4.1.LetN satisfy(H) and(H′) andL be chosen as above. Then, there exists, inE′ = E \ k−1(L), a unique
C∞ maximally complex(2n − 3)-subvarietyM with negligible singularities inE′

� N , foliated by complex(n − 2)-
subvarieties, with the properties thatsuppM ⊂⊂ E′ andM simply(or trivially ) extends toE′ by a(2n − 3)-current
(still denotedM) such thatdM = N in E′. The leaves are the sections by the hyperplanesEx0

1
, x0

1 ∈ k(N) \ L, and

are the solutions of the “Harvey–Lawson problem” for finding a holomorphic chain inEx0
1

∼= C
n−1 with prescribed

boundaryN ∩ Ex0
1
.

In [7,8], the statement [7], Théorème 6.9 is given forE′ = E, n � 4, and forN real analytic (Cω), in two particular
cases. The proof forC∞ regularity, uses again [9], for anyN with negligible singularities, but outsidek−1(L). The
Cω hypothesis, and the particular cases we considered, allowed to go back to situations of Harvey–Lawson [

5. On some Levi-flat(2n − 1)-subvarieties with given boundary inC
n

We now return to the initial problem of finding a real Levi-flat hypersurface inC
n with prescribed boundary. W

translate this problem into a boundary problem for subvarieties of a hyperplaneE of Cn+1 with negligible singulari-
ties, foliated by holomorphic varieties and then apply Theorem 4.1. We mention that Delannay [6] gives a sol
the problem under certain additional assumptions.

We first show that there exists a global Lipschitz functionν :S → R that is smooth and without critical poin
away from the complex points. By Proposition 2.1, suchν can be constructed near every complex point. Furtherm
in view of Proposition 3.1 suchν can be obtained globally onS away from its complex points. Putting everythi
together and using a partition of unity,we obtain a functionν :S → R with desired properties.

We now set̃S = N = grν = {(ν(z), z): z ∈ S}. Then, as a consequence of the properties ofν and the description o
the CR orbits in Proposition 3.1, all the assumptions of Theorem 4.1 are satisfied. We conclude thatN is the boundary
of a Levi-flat(2n − 2)-varietyM̃ in R × Cn. Takingπ :C × Cn → Cn to be the standard projection, we complete
proof of Theorem 1.1.
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