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Abstract

For a general class of models, we prove the global asymptotic stability (GAS) of the disease free equilibrium (DFE) under
general assumptions. These conditions are related to the basic reproductivegatie also give a practical algorithm to
compute a threshold condition equivalenflg < 1. We show that these two results can be applied to numerous epidemiological
models from the literaturdo cite thisarticle: J.C. Kamgang, G. Sallet, C. R. Acad. Sci. Paris, Ser. | 341 (2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Stabilité globale et asymptotique de I’ équilibre sans maladie des modéles épidémiologiques. Pour une classe générale
de modeéles, nous prouvons la globale asymptotique stabilité de I'équilibre sans maladie sous des hypothéses générales. Ce:
conditions sont relatives au nombre de reproduction de Ras&ous donnons également un algorithme pratique permettant
d’établir une condition de seuil équivalentegy < 1. Nous montrons que ces deux résultats peuvent étre appliqués a de
nombreux modeéles épidémiologiques de la littératBoeir citer cet article: J.C. Kamgang, G. Sallet, C. R. Acad. Sci. Paris,
Ser. | 341 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version francaise abr égée

Nous considérons une classe de systemes courants en épidémiologie. Ceux ci sont généralement des systéme
d’équations différentielles définis sur une patiiepositivement invariante, d[@’i1 X R’E. S'il n'y a pas d’immi-
gration d’infectieux ou d'infectés ils se mettent sous la forme du systéme (1) :
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1)

X1 =A1(X) - (X1 — X]) + A12(X)X2,
X2 = Aa(X)Xa.

Le vecteurx; représente les «non malades» (i.e. les susceptibles, les guéris, les immuns, les mis en quaran:
taine, ...) eko représente les « porteurs de la maladie » (i.e. les infectés, infectieiid, a matriceA,(x) est une
matrice de Metzler (matrice dont les termes hors diagonaux sont positifs, [6]) pourdaat

Théoréme 0.1. SoitG c U =R* x R’? un sous ensemble borné, d'intérieur non vide. Soit le sys(éjrgue
I'on suppose de class#* (pour simplifie) défini sur/. Si

(1) G est positivement invariant relativemenl ;

(2) Le systemg1) réduit a la sous-variété sans maladien (IRi’L1 x {0}) : X1 =A1(X1, 0) - (X1 — X}) est GAS au
pointxj ;

(3) Pour toutx € G, la matriceA,(x) est Metzler irréductible

(4) Il existe une matricél,, qui est un majorant de\l = {Ax(x) € M,,(R) | x e G} avec la propriété que si
As € M, pour toutx € G, tel queAx(X) = Ay, alorsx € R x {0} ;

(5) Le module de stabilité d&z, a(A2) = max,csya) R(R) vérifiea(Az) < 0.

Alors le DFE(x}, 0) est GAS dan§.

1. Introduction

For epidemiological models, the basic reproduction r&ipis typically defined as the average number of new
cases produced by a typical infectious individual during its entire infections period (Diekmann and Heesterbeck
[5,4]). Itis shown thatRo can be computed as the dominant eigenvalue of a positive compact operator. In general,
the spectral radius of a positive operator is not easy to compute. The same remark applies for the Routh—Hurwitz
criterion for systems of dimension higher than four. We provide a simple algorithm to compute a threshold condi-
tion equivalent tdRg < 1 for the stability of the DFE. Furthermore we prove for a general class of epidemiological
ODE systems thaR < 1 is a necessary and sufficient condition for the GAS of the DFE.

In the following we use the following classical notations and definitions A_et (¢; ;) andB = (b; ;) be two
real matrices; we say that < B if and only if a; ; < b; ; for all (i, j), A <Bif and only if A < B andA # B,
and we noteA < B if and only ifa; ; < b;; for all (i, j). We denote byr(A) = max,cs,na) R(1) the stability
modulus of a square matrix = (a; ;), i.e. the greatest real part of eigenvalueg\.of

2. A theorem of stability

We consider systems arising from epidemiological problems, when modeled as compartmental deterministic
systems [6]. This includes also intra-hosts models from virology [11]. It can be shown that under general hypothe-
ses the system can be written as system (1) and is defined on a forward invariant compac? aftisgt x R'}2.

The nonnegative vector; can be considered as the vector representing the state of different compartments
of non transmitting individualg¢e.g. susceptible, immune, quarantine,), the vectorx, can be interpreted as
the state of compartments of differemansmitting individualge.g. infected, latent, infectious, ...). We assume
that the matrixAx(x) is Metzlef for all x € £2. Moreover, we suppose fulfilled the following natural biological

1 Matrix such that off diagonal terms are nonnegative.
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assumption: The systery = A1(x1, 0) - (X1 —X7) is GAS atx]. In other words there is a demographic asymptotic
equilibrium when there is no disease in the population.

2.1. Atheorem for the GAS of the DFE

Theorem 2.1. LetG C U =R! x R%? be a bounded set with nonempty interior. [Btbe a given system supposed
to be of clas¥’! defined ori/. If

(1) G is positively invariant relative t@l);

(2) The systenfl) reduced to the disease free sub-manif6ich (}R’i1 x {0}): X1 = A1(X1,0) - (X1 — X]) is GAS
atxj,

(3) For anyx € G, the matrixAx(x) is Metzler irreducible

(4) There exists a matriA, which is an upper bound of the sét = {Ax(X) € M,,(R) [ x e G} with the property
that if A» € M, for anyX € G, such thatA,(X) = A, thenx € R x {0};

(5) The stability modulus ok, satisfiesx(A) < 0.

Then the DFEx}, 0) is GAS inG.

Sketch of proof. By the Perron—Frobenius theorem, there exists 0 such thatuT A, = «(A)u’. We use the
Lyapunov functionL (x) = (u, x2) which satisfied. (x) < 0. Using the irreducibility property ok (%) andA,, we
prove that the greatest invariant set contained in thetset(x € G | L(x) =0} is contained inG N (IEE'_’Fl x {0}).
However, on this set, the reduced system is GAS>dn 0). This proves that the greatest invariant seiirs
{(x1, 0)}. Hence by the LaSalle principle [7] this equilibrium is GASGn O

Corollary 2.2. With the same notations and the same hypothesis than in Thebfenh furthermore we have
Az =Az(x],0), then the DFE is GAS if and onlyRo < 1.

Sketch of proof. The Jacobian of the system at the DFE is

I A1(x1,0) A12(x],0)
- 0 A2(x;, 0) |

Hencea(A) < 0 is a necessary condition; this is equivalentRe < 1 [4]. The condition is sufficient by the
preceding theorem. O

3. Computation of conditionsfor a Metzler matrix M to satisfy (M) <O

Proposition 3.1. Let M be a square Metzler matrix written in block foriv = (é g), with A and D square

matrices.M is Metzler stable if and only if matrices andD — CA~1B are Metzler stable.

We prove the necessity of the condition. Any principal sub-matrix of a Metzler stable matrix is also Met-
zler stable A andD are Metzler stable. Sincl is Metzler stable there exists a positive block column vector
¢ = (c1; C2) > 0 such thatM - ¢ « 0. This meansAc; + Bco « 0 andCcy + Dc « 0. SinceA is Metzler sta-
ble —A~1 > 0 andC is nonnegative, we pre-multiply by CA~1 > 0 to obtain—Cc; — CA~1Bc, < 0. Hence
(D — CA~1B)cy « 0 which proves thab — CA~1B is Metzler stable. The necessity has been proven.
The condition is sufficient. IA andD — CA~1B are stable Metzler matrices, there exisis> 0 such that
(D — CA~1B)cy « 0. Letcg = —A~1Bc,. SinceA is Metzler stableB nonnegative and, > 0 it follows ¢z > 0
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and the inequalitie€c3 + D¢y « 0 andAcz + Bcy; = 0 hold. SinceA is Metzler stable, let >> 0 such thaAv « 0.
We definec; = cz3+¢6v > 0 fore > 0. HenceCcy + Dcy = Ccz + Dep + ¢Cv. SinceCcz + Dcp « 0 andv > 0 we
can choose sufficiently small such thafc; + Dcy « 0. This givesAcy + Bco = Acz + Beo + sAv =¢Av « 0
which proves thaM is Metzler stable, hence the condition is sufficient.

4. Examples

Our results can be applied to numerous examples of the literature, improving some results on the GAS of the
DFE [1,8-10]. As illustrations, we choose two examples from the biological literature and give also an original
example in dimension 13.

4.1. The bovine viral diarrhea virus (BVDV) model [3]

The example is based on a model by Cherry et al. [3]. The reader is referred to this paper for the description of
the model. We change the original notation to adhere to the classical compartment’'s name (S susceptible,

M=uR1— (n+o)M, S=cM+uS+E)+A—uS— (Bl +BoP)S,

é= (BLl 4+ B2P)S — (u+ ) E, {=aE —(n+ I, @
Ri=ymil +¢3Z +2¢p2R2 — uR1, Ro=ymol — (u+¢2)R2,

Z=ynsl — (1 +¢3)Z, P=0¢3Z+(u—a)P — (u+Db)P.

Since, in the model, the population of the herd (denoted/lpys kept constant by re-equilibration recruitment in
the herd corresponding td = u(M + I + R2 + Z) + (a + b) P — (¢p2R2 + 0¢3Z) in the class S. We can reduce
to 7 states. We define, = (S; R1; R2) consisting in non transmitting cattle, ard= (Z; E; I; P). The DFE is
(N,0,0,0,0,0,0). On the compact forward invariant S8t= {x = (X1, X2) € Ri | Zi?:lxi < N} (isomorphic to
the simplex oﬁRi), the system can be easily written in the form of Eq. (1), with:

—(u+ ¢3) 0 Yy 0
Ap(x) = 0 —(u+a) B1S B2S
0 o —(n+y) 0
0¢3 0 0 —(a+b)

The conditions (1)—(3) of Theorem 2.1 are obviously satisfied.

Let J, the bloc of the Jacobian matrix, computed at the DFE, correspondiig the expression af; is A2(X)
in which S is replaced byv. ThenJ; is irreducible and we hav&a(x) < Ja.

To apply the Corollary 2.2 we have to compute the conditidip) < 0, applying the Proposition 3.1 iteratively
gives a NSC for GAS of the DFE:

aN(B1(p + ¢3)(a + b) + P2b¢syma) _
(m+ ) +y)(u+a)a+b)
Then we have been able to compute a threshold condition equivalent to the condition obtained in [3], but in addition

we get the GAS of the DFE on the simpléx the biological domain of the system, problem not treated in the quoted
reference. Moreover, we consider the general problem with the two transmission parginerds,.

4.2. Atwo strain tuberculosis model [1]

The following example shows that our result can be used iteratively. We consider the two strain tuberculosis
model of Castillo Chavez et al. [1,2]. The system is given by:
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. - I I . I I
T=rEi+A—-p—qrh—\|op1= + oy +u|T, S=A—\obr1=+ P2 +u|S,

N N N
R I I - P . -
E1=U/31NS+U/31NT+P711_ k1+r+u«+/32N Ei, hh=kiE1—(F+upu+d)h, (3
. I B .
E2=ﬂ2N(S+E1+T)+qr11—(k2+M)E2, I =koE2 — (u+d2)I>.

The DFE isxg = (ﬁ; 0; 0; 0; 0; 0). We obtain easily a forward invariant absorbing compactGéor example
0<N<A/p).

In this case we cannot apply directly the theorem since the nfasiix) is not irreducible. But this matrix can be
decomposed in a diagonal of two block Metzler matrices. Then we apply Theorem 2.1 and Corollary 2.2 iteratively.

. k > k .
We obtainR; = % <1andR; = % < 1. As in [1], we haveRo = maxR1, R2), and

we have proved that foRg < 1, the DFEXg is GAS inG. SinceG is absorbing, the DFE is GAS (Rn?r.

In [1] (Theorems 2 and 3) the authors obtained a similar resdigif< 1 with the hypothesig/; = do = 0,
i.e. they assume that there is no disease-induced mortality. The authors ‘extend’ thd;casesandd, > 0
numerically. Our result confirms this simulation. The authors obtained their results by using limiting system, which
proves the attractivity of the DFE. The stability is obtained®ay < 1 which ensures the local asymptotic stability.
Our technique allows us to solve the problem of stability at the bifurcation value of the parameters. We stress that
this stability is relative to the s@i. It can be proven that the DFE f® = 1 onRR® is a saddle-node equilibrium.

4.3. Analysis of the effect of insecticide treated nets on the dynamic of malaria transmission

We give a model of the dynamic of the transmission of malaria in a population where a part of humans own and
use lifelong the I.T.N. (insecticide treated bed nets) all time to protect themselves against mosquitoes bites. The
human population is structured B¥ classes giving 4 compartments according their I.T.N. status.The mosquitoes
are divided inSE1E2E3l classes and are in a state of questigh 6r resting R) giving 8 classes. A special
class of resting exposekl, mosquitoes is created giving a model of 13 compartments. Such a model implies two
populations, the population of female anopheles in compartments index@ddryquesting andr for resting and
the humans population divided in two classes, a class of I.T.N. users (indexgy] bpd a class of non users of
I.T.N. (indexed byN).

So=uM — (u+ B)Sg + 8k, Sk=B(L—d—¢)So — (1t +5)Sk,
EY =BpSo — (u+8EY, EY =8ER — (u+PEY,
EY =pA-dEY — (u+OEQ. ES =8EY —(u+PEY.
(3) —B(1— d)E(Z) (1 +8)E(3) (3) 5E(3) (1 + ,B)E(3) )

4 ) 4 Ig
EY) =B(l-d)Ey 8E Iy =Bhyby—2 (HA—-B)—1 I
= B( ) —(u+9) , In=p N2H(1 B)( ( )—In) — vy,

Ip= ﬁthzﬁ(HB —Ig)—ylg, Ig=8EY —(u+pB)g+5Ik,

Ir=BA—d)lg— 6+ p)lg.

We definexy = (Sg: Sg) andxo = (R EQ ER ED ER EQ ER: Iy: Ig: Ig: Ir); the DFE is given
by x* = (x¥; 0) (i.e. x5 = 0) with x} = M(M(M +8); Mﬂ(l d)) Wlth A=p(u+8)+8(n+pd).OnG =R13
the system can be written in the form of system (1), wikh(x) a square matrix of order 11.

The conditions (1), (2) and (3) of Theorem 2.1 are satisfied. The irreducibility of the maticesis estab-
lished by following the paths interconnecting compartments corresponding to the components of
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The upper bound of the set of matric&s(x) which is matrixA; is attained fox = (H (1 — B); H B; 0); this
matrix is also irreducible for the same reason as the matfiges).
The conditionx (A2) < 0 obtained by applying iteratively the algorithm in Proposition 3.1 is equivalent to

M (1—d)3p5s3 <h§ h2 ><1

Re = —bib 2 (5)

H 2 A+ B3+ )3
This gives the condition for the DFE to be GAS.
We remark that since the value of the matix is not attained to the DFE the left value in the condition (5) is
not Ro. Computing the conditiorr (A2(x*)) < 0 by applying the Proposition 3.1, we have:

2 35202 2 2
Ro= %llvblbzl( 5 ) <ﬂ(l_d)) F ( " +h—3) <1
H y\u+3 w+B A2 \1-B B

as it can be checked by verifying the biological signification.

We have chosen the example of the effect of I.T.N. on the dynamics of the transmission of the malaria, which is
a work in progress to stress that our result can give necessary condition for GAS of the DFE. The tuberculosis and
BVDV examples illustrate that our method can be applied to numerous models of the literature to improve already
known results. In the following examples of the literature, we can conclude, in the same manner, to the GAS of the
DFE whenRp < 1 [1,8-10]. We can for example answer affirmatively to a conjecture of Perelson in [11]; i.e. the
DFE is GAS iff Rg < 1. The result has been obtained as in the preceding examples.
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