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Abstract

This Note introduces recent developments in the analysis of inventory systems with partial observations. The states of these
systems are typically conditional distributions, which evolve in infinite dimensional spaces over time. Our analysis involves intro-
ducing unnormalized probabilities to transform nonlinear state transition equations to linear ones. With the linear equations, the
existence of the optimal feedback policies are proved for two models where demand and inventory are partially observed. In a
third model where the current inventory is not observed but a past inventory level is fully observed, a sufficient statistic is provided
to serve as a state. The last model serves as an example where a partially observed model has a finite dimensional state. In tr
model, we also establish the optimality of the basestock policies, hence generalizing the corresponding classical models with full
information.To citethisarticle: A. Bensoussan et al., C. R. Acad. Sci. Paris, Ser. | 341 (2005).
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Résumé

Contrdle optimal desstocksavec information partielle. On présente un certain nombre de modéles de systéemes de stocks avec
information partielle. lls sont formalisés comme des problemes de contrdle ou I'état est une probabilité conditionnelle, dans un
espace de dimension infinie. On introduit des probabilités non normalisées, permettant de transformer des équations non linéaire
en équations linéaires. On peut alors montrer I'existence de feedbacks optimaux pour deux modéles ou la demande et le stock so
partiellement observables. Dans un troisieme modéle, le stock n’est pas observé, mais un stock antérieur est observé. Une statistig
exhaustive est obtenue, et I'état est de dimension finie. On établit I'optimalité des politiques «stock de base », généralisant le:
modeles classiques avec information compl@ir citer cet article: A. Bensoussan et al., C. R. Acad. Sci. Paris, Ser. | 341
(2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version francaise abr égée

Bien que la gestion des stocks ait été I'objet d'une littérature considérable, la situation ou I'information est partielle
n'a pratiquement pas été abordée jusqu’a présent. On montre, sur un certain nombre de modéles, comment I'idée tri
féconde des probabilités conditionnelles non normalisées, introduites dans le filtrage non linéaire par Zakai peut étr
adaptée et permet d’établir I'existence de politiques optimales. Les problemes a traiter sont du type suivant
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ou p(x|&) est la probabilité de transition d’'une chaine de Markpest le processus obsenég,le contrdle adapté a
Z;_1 etm(x) est une probabilité conditionnelle qui représente I'état du systeme. L'équation de Bellman associée es
donnée par

mr1(x) = :[LZ]=({[ + 1., <q: p(xlz), (1)

I pCleym (€) de
IREIGES

00 q
V(ﬂ)=rgin:/L(x,q)ﬂ(x)dX+aV( )/n(é)dé+a/V(p(-|é))ﬂ(§)d€}- 2
q 0

La linéarisation est obtenue par les Egs. (8)—(10) ci dessous. Un principe de contraction peut s’appliquer & (8
et permet de résoudre aussi (2), et d’obtenir un feedback optimal. Un probleme beaucoup plus complexe est déc
par les Egs. (19), (22), (23). La aussi, la linéarisation simplifie considérablement, méme si le principe de contractio
ne s’applique plus. On prouve l'existence d’'une solution maximale qui s’interpréte comme la fonction valeur d’'un
probléme de contrdle. On construit une suite de contréles feedback formant une suite minimisante (le feedback optim
peut ne pas étre atteint).

1. Introduction

Inventory control is one of the most important topics in operations research. A systematic analysis of inventory
problems began with the development of the classical EOQ formula of Harris in 1913 [9] and a significant plateau
was reached in 1958 by Arrow, Karlin and Scarf [1]. A critical assumption in this vast literature has been that the level
of inventory at any given time is fully observed. Some of the most celebrated results such as the optimality of base
stock or ¢, S) policies have been obtained under the assumption of full observation. Most of the well-known inventory
policies are not only non-optimal, but are also not applicable in the partial observation environment. While one works
with a finite dimensional state space in the full observation case, one usually has to deal with an infinite dimensione
state space in the partial observation setting. In particular, in the full observation cases the inventory level is often th
state variable, whereas with the partial observations, the system state is typically the conditional distribution of the
inventory level given the partial observations.

It is the purpose of this paper to introduce some techniques, reminiscent of the Zakai equation [11] in stochasti
control, for the analysis of inventory control with partial observations. The Zakai equation uses a transformation tha
changes the highly nonlinear Kushner equation [10] for evolution of probability distributions over time into a linear
equation. While the transformation does not remove the infinite dimensionality, the linearity permits a number of
important control problems with partial observations to be solved. On the other hand, some inventory models cal
admit a finite dimensional sufficient statistic. For a specific inventory model, this statistic turns out to be the known
inventory level in an earlier period plus all of the inventory orders made since that period. When there exists a sufficien
statistic, the well-known optimal ordering policies are more likely to remain valid.

In Sections 2 and 3, we introduce two separate inventory models, both of which benefit from the derivation of a
Zakai-type equation. In Section 4, we provide an inventory model which admits a sufficient statistic. Sections 2—4 ar
respectively based on [5,3,4] and [6].

2. Partially observed demand dueto censoring

Although many inventory models assume a static and a known demand distribution, this distribution in reality
can change over time and so it is likely to be unknown. The distribution needs to be updated based on the demar
observations. Ding et al. [7] study a multiperiod newsvendor model with Bayesian updating of demands. Specifically
the demand is observezhly when it is less than the inventory level, i.e., unmet demarisored Consequently,
the state of the system is the distribution of the demand characterized by a parameter, which is updated in each peri
based on the partial observation of the demand at that time. Ding et al. assume that the demands are independer
and identically distributed. On the contrary, in this section we do not make any assumption on the demand distributio
or correlation between the demands in different periods, except that it is a Markov process. Furthermore, we develc
a Zakai-type equation [11] for the evolution of the conditional probability distribution of the demand over time. This
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facilitates the analysis of the dynamic programming equation for the problem. We establish that the value function is
the unique solution of the DP equation and that there exists an optimal feedback policy for the problem.

We now formally define our problem. Lét2, 7, P) be the probability space and let: 1 be the indices for the
periods. LetD; > 0 denote the demand occurring at the beginning of peridthe demand is modelled by a Markov
process with the transition probabilities given pgx, &) := P(D;+1 = x| D; = £). The inventory available to satisfy
the demand);, or a part thereof, is calleg}. Like [7], we assume that the excess inventory at the end of each period
is salvaged and the unmet demand in a period is lost. husn also be thought as the order placed and delivered at
the beginning of period before the demang, arrives. Then the amount of sales is given by

z; = min{Dy, g, }. (3

When D, < g;, the demand is met and therefore observed. On the other hand,fyhew;,, the inventory is not
sufficient to meet the demand in periodThen, the amount of sales is onjy and D; — ¢, is the unmet demand.
When the demand is not met, the unmet demand is not observed by the inventory manager (IEl)deeote the
sigma algebr&Z, := o ({z1,...,2:}). SinceZ; Co({D1, ..., D;}), we have a partially observed inventory model.

Let the functionL(D, ¢), which depends on the demamdand the available inventory level, denote the one-
period cost function:

cq—h(g—D) ifD<q ()
cq+b(D—¢q) fg<D|[’

whereh, ¢ andb are, respectively, the salvage value per unit, the ordering cost per unit, and the shortage cost per unit.
It is reasonable to assume that(®: < ¢ < b.

With the discount factor & @ < 1 and withq defining the sequence of order quantities {1, g2, . ..}, with ¢,
adapted taZ,_1, our objective is to minimize

L(D,q)= {

o
J@:=) o' 'EL(D;. q)). (5)
=1
We take the initial distribution o1 as given to start the process. Note thatis determined with certainty at the
beginning of period 1. This completes the definition of our problem.

We start by studying the evolution of the demand distribution.tetlenote the conditional probability density
function of D,. Sincer;1 is updated fromr; and Z;, it is obvious thatr,, 1 is Z,-measurable. When an integral is
taken ovell0, co), we suppress the limits to save on the notation.

Using probabilistic arguments, we obtain the random density meaguien terms ofr,:

Sy m @) p(x[§) dg
ch:o m (&) dé

With this distribution as the state variable, we now proceed to derive the dynamic programming equation for our
problem.

Trp1(x) = ]lz,:q, + ﬂz, <q; p(x|zs). (6)

2.1. Bellman equation with normalized and unnormalized probabilities

We begin with the expected total costs occurring in the current period., EL(D;, ¢;) = [ L(x, g¢)7:(x) dx.
Eq. (6) implies that the future costs should have two terms depending on whether the demand is observed. When th
demand is not observed, the future costs depend on the first term on the right-hand side of (6). Otherwise, they depen
on the second term. Summing up the current and future costs that result in by okgdeieids the terms inside the
curly brackets in the Bellman equation below:

S pCI§)m(E) dg
S m@©) ds

e’} q
V(n)=mqini/L(x,q)n(x)dx+aV< )fn(s)ds;+a/V(p(~|§))n(s)dg}. (7)
q 0

This equation yields the optimal as a function of the current knowledge summarized iabout the demand. The
state transition equations can be linearized as we illustrate next.
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We begin with (6) and develop what is known as the unnormalized probability. Its dynamics is similar to the Zakai
equation obtained in the filtering literature [11].
Taking a cue from (6), we defing (x) by the recursive linear equation

[e.e]

Pr41(x) =17 =, / px|&)pr(§)dE + 1 <g, p(xlzy) fore>1, (8)
qt
with the initial valuepi(x) = p(x) = 7 (x). Eq. (8) corresponds to the Zakai equation for systems with diffusions
in [11] and [2]. Also set\; := [ p;(x)dx. Then we have.y =1 andi; 1 = 1, fq‘:" pr(§)dE + 1,4 fore>1,
which follows directly from integrating the left-hand side of (8) oy@roo). Moreover,p; (x) = 7;(x)A;, wherea; is
a weighting factor which allows us to recover normalized probabilities.
We define, for any positivé! function p,

. o
W(p) = V<7fp(x)dx)/p(x)dx' )

We use (7) and (9) to obtain a recursive equationi¥or

%) q
W(p) = mqin{/ L(x, y)p(x) dr + aw</ pCE)PE) ds) ta f W (p(18)p(®) ds}. (10)
q 0

From the linearity inp of the first term inside the minimum above, we can seelth@) = 0 andW is homogenous
ofdegree 1,i.eW(ap) =aW(p) fora > 0. The right-hand side in the Bellman equation (10) has linear growth, which
facilitates the derivation of the existence results below.

2.2. Existence of an optimal feedback solution and monotone value functions

First we show that there exists a unique solution of the DP equation. For this, we define some normed linea
spaces. Lett := {p € LY(MT): [x|p(x)|dx < oo}, where L1(%*) is the space of integrable functions whose
domain is the set of nonnegative real numbéisis a subspace of.1(%1). Since we are interested in nonneg-
ative unnormalized probabilities, we defifte™ = {p € H | p > 0}, a closed subset df{ with the norm|p| =
[lp@x)|dx + [x|p(x)|dx. Let us also define the spade= {¢(p): HT — N | sup..qlP(0)|/llpll < oo} with the
norm{|¢lig = sup,ep+ 1901/l o1l-

We assume thatforany e B, [x [ p(x§)u(§) dg dx < ¢ [Eun(§) dg with ¢ < 1. We also define the map(W)
as

e’} q
T(W)(p):= mqin{/L(x,y)p(x)dx+aW(/p('lé)p(E)d$> +a/W(p(-|§))p(5)dE}. (11)
q 0
The next theorem summarizes the results.

Theorem 2.1. If there exists a solutioV (p) of (10), it is in B. Furthermore,|| T (W) — T(VT/)||5 <amaxl,c} x
IW — W| 5. Thus, there exists one and only one solutip) of the Bellman equatio(iL0). Moreover,W (p) is
continuous at eaclh € H* and there exists an optimal feedback policy.

Using a value iteration based on (10), we can deduceWat) is monotone increasing and concavepinMore
interestingly, the total discounted cdétx) is smaller when the demand is believed to be smaller in the hazard rate
order. We also say that linear operaf@(r) defined byP(x) := [ p(-|§)7 (&) d§ is hazard rate order preserving if
P(x) < P(x) holds for allr andn’ with = < 7’.

Theorem 2.2. V(x) < V(') if 7 is smaller thant’ in the hazard rate order an® () is hazard rate order preserving.
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3. Partially observed inventory dueto zero-balance walk

In this section, the demand has a known distribution but the inventory ieatkthe beginning of periodis given
by
L= +q, — D) fort>1 (12)

In every periodr, demandD;, is met, to the extent possible, from the on-hand sthck ¢;. When the demand is
met entirely, inventory holding costs apply to the remaining inventory. Otherwise, there are lost sales costs. We assum
demandD; to be i.i.d. A generic demand is denoted by which is i.i.d. with eachD;. Let f denote the density and
F denote the cumulative distribution &f. Let F =1 — F.

In classical inventory settings, the inventory levgels observed, and is used to determine the order quaptity
periodz. In this section, the IM does not automatically observe the inventory level due to transaction errors, misplaced
inventories, spoilage or production yield. The inventory level is observed only when there is no physical inventory.
When there is inventory, only the event that the inventory is positive is observed. We continue taaudenote the
observed signal, which in this context is

It = 1[[:0, t 2 0. (13)

The signalz; is a discrete-time Markov Chain with the state spf8@el}: 1 means an empty inventory shelf and O
means a nonempty shelf. This observation process mimics what is known as ‘zero-balance walk’ [8] at some com-
panies where employees walk around the shelves to identify the stocked-out items and verify the inventory levels for
those items.

The orderg; is adapted taZ; := o ({z;: 1< j <1t}). Clearly Z, ¢ F; := o ({I;: 1< j <t}). Given a stationary
cost functionc(1;, g;) that depends on the inventory levgland the order sizg,, and withq defining the admissible
order quantities, the total discounted cost is defined by

J@.m.q) =Y o Bl ). (14)
t=1

The initial conditions are a pai, 7 (x)), where¢ is 1 or 0. If¢ is 1, thenl; = 0. If ¢ is 0, thenly > 0 andx () is
the probability distribution of1. We look forg,, adapted taz;, ¢+ > 0, to minimizeJ (¢, 7, Q).

3.1. Evolution of state probabilities

We now develop the conditional probability density(-) of I, given Z;_; andI, > 0. Derivation ofr, in this case
is more involved than in Section 2, so we furnish more details. By definiy@m,,(y) dy =P(I; <x|Z;-1,I; > 0).
Since the event/; = 0] is observable, conditional probabilities are needed only when0. We can obtain

E[¢(1t)ﬂ-l,>0|zt—1]

: (15)
E[1},>0lZ;-1]

/fﬁ(X)m(x) dv =E[¢(I)Z-1, I, > 0] =
0

whereg is an arbitrary test function. In order to obtain a recursive expressiary fiorterms ofr; 1, we begin with
expressin@ (¢ (I;)| Z;) in terms of conditional expectations with respect®a ; in the next two lemmas.

Lemma3.1.

E(p(I)11,501 2
E(¢ () Z/) = 15,04 (0) +1/,-0 (pUIN11,5012-1)

P(; > 0|Z;_1)

=1;,-00(0) + 11,>0E(¢(1t)|zt717 I > 0)‘ (16)

Lemma 3.2.
Jo 9@ f(gr-1—2)1g,_;>-dz
F(g:-1)
0@ [y FO+@-1— Dm-1(y)dydz
JoT FO + qi—vm—1(y) dy '

E(¢(I)|Z)1=0=1}_,-0

]]-I,_l>0 (17)
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Going back to the conditional probability,, we may writeE(¢ (I;)|2;) = 1;,=0¢(0) + 1,50 foood)(z)n,(z) dz.
Equating the second term on the right-hand side of this equality to (17), we get

o0
_1—x)1 _ fO+q-1—x)m-1(y)dy

T(x) = 111,_120{ @1~ Do s } + 111,_1>0{ Jo @y : : } (18)

F(q:i-1) Jo  F(&y+qi—Dm—1(y)dy

Equivalently, the conditional probability evolves according to the highly nonlinear equation
o
1= )1, - . fO+q-1—x)m_1(y)dy
m) — g LG e g ey t ' ,
F(gr-1) Jo F(qi-1+ y)mi—1(y)dy

122, mi(x) =m(x), (19)

which corresponds to the Kushner equation [10] in our inventory context.
For linearizing (19), we sep,(x) := A;7;(x). On account of this weightingg, (x) becomes the unnormalized
probability and it evolves according to the linear equation

o0
i (X)) =zr-1f(gr—1— X)Lxeq,y + A —2-1) f fO+qg-1—x)p—1(y)dy, p1(x) =m(x). (20)
(x—qr71)+
By integrating both sides of; (x) = A,7;(x), we geth; =z,_1F(g;—1) + (1 — Zt—l))»t—lf F(gr-1+ y)m—1(y) dy
which is a linear equation defining recursively starting with; = 1. However, note that, depends om;_1. The
normalized probabilities can easily be computed from the unnormalized probabilitte$ty= p; (x)/ [ o (x) dx.
The evolution equations can be written in the operator form in the spécand its dual spacé+, =
{¢: sup..gle(x)]/(1+ x) < oco}. Furthermore(p, ¢) = fooo p(xX)p(x)dx for p e H, ¢ € H,.
For any scalag > 0, define the linear operatdr from H to H as® (¢, p)(x) = f(‘)’iqﬁ f+qg—x)p(y)dy. Note
that® (g, 8)(x) = f(g —x)1y <4 SOP (0, §)(x) =0 for the Dirac delta functiod. Define the nonlinear operatér as
P(q, p)
W(g,p)=——. 21
TP = e 0. 1) )
With these notations and the initial conditions = o1 = 7, we can write (19) and (20) in the operator form:
m=z-1¥(q:,8) + (1 — z—)¥ (q;, m;—1) andp; = z;1P (g4, 8) + (L — ;1) P (q:, pr—1). We emphasize that the
second equality is linear, while the first is nonlinear.

3.2. The Bellman equation

We write 7r;[q] to emphasize the dependence of the staten the control policy. We assume thatl;, ¢;) has
linear growth in/;, for every fixedq,, i.e.,c(-, ;) € H.. The cost function is:

oo o
J@. Q) =Y o 'E[E[c(.q)12]] =) ' E{z:c(0.41) + (1 — z){c(-. g1). m [ql)}
=1 =1
wherer,[q] is given by (19). Recall that the initial conditiogs = ¢ € {0, 1} andz1 = & are given. We now study
only the discounted infinite horizon cost, so the time indéxsuppressed. We define the value functiog, =) :=

If we write v := V (1, ) which, in fact, is not dependent an andV (r) := V (0, ), then we obtain the following
system:

V()= igf{(C(u q).7) +av/ F(y+q@n()dy +aV(¥(q,n))F(y +q)7r(y)dy}, (22)
v=ir('llf{c(O,q)+otvl7(q)+aV(lI/(q,8))F(q)}. (23)

The study of the system in (22), (23) simplifies considerably when working with the unnormalized probability
p € HT. Towards that end, we define a new value funciqn: Z(p) := V(p/A)x andi := [ p(x) dx. We obtain the
following new system of equations:
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Z(p) = igf{(c(-,q),p>+avff(y +q)p(y)dy +aZ(<15(61»,0))}, (24)
v= igf{c(O,q) +avF(q) +aZ(P(q.9))}. (25)

The pair (v, Z(p)) is the solution of (24), (25). We hav&(0) = 0 andZ is homogenous of degree 1. Unlike the
operatorV, @ is a linear operator.

3.3. Existence of a solution to the Bellman equation

For the existence results, we bound the single period cost. Suppose that positive censgantsandh are such
thatcg < c(x, q) < co+ c1g + hx for x > 0, wherecg can be interpreted as the maximum expected lost sales cost
that can be incurred in a period. Indeed, wecget ¢(0, 0).

We need some short-hand notation: Define the functiont x H x % x B — % as K(q, p;v,Z) =
(cC.q@). pO))+av [ F(y+q)p(y)dy +aZ(®(q.p)). Forp =36, K(q,8;v,Z) =c(0,q) + avF(q) + «Z(P(q., ).
Define the mag : % x B — N x BasT (v; Z(p)) := (inf, K(q, 8; v, Z); infq_K(q, 0;v, Z)). Define(Zp(p), vo) as
the value function when = 0. Then, we have respectively(-, 0), p) +avo [ F(y)p(y) dy +aZo(@(0, p)) = Zo(p)
andvg = cg + avp.

Lemma 3.3. Zg exists and is uniquely defined f

Note thatT (vo; Zo(p)) < (vo; Zo(p)) andT (v; Z(p)) < (v; Z(p)). These inspire a value iteration scheme which
yields (v, Z).

Theorem 3.4. (3, Z) is a solution of(24L (25)and 0 < v < vg, 0 < Z(p) < Zo(p). Moreover, it is the maximal
solution satisfyingv; Z) =T (v; Z). AlsoZ(xr) = infq J(0, 7, q) andv = infq J (1, 7, q)).

Owing to the last statemenk, () andv are interpreted as the infima of the costs. This, however, does not imply
the existence of a feedback policy unless the order quagptisybounded. When the optimalis bounded in terms
of p, the bound can be arbitrarily large as—> 0. Because of this, we choose to assume a boungiaraddition to
the cost bounds in the previous section. Let the maximum production capaeitabe let the correspondirig andv
be denoted by™ andv™. Then (24), (25) is written as

zZ"(p) = qigfn{(c(-, q). p)+av” / FOy+q)p()dy+aZ™(D(q, p)) }
) (26)

m

v" = inf {c(0,9) + av" F(q) + aZ™ (®(q.9))}.

inf
gsm
We can check that constamg' andB™ exist such thatz™ (p) — Z" (p")| < A™ [ |p(y) — p' (W) |dy + B™ [ ylp(y) —

o' (y)|dy for any twop, p’ € H. Therefore,Z™ is Lipschitz continuous oft{. This additional smoothness property
allows us to establish the uniqueness of a solution to the system in (26) in the absence of a contraction property ol
T as in Theorem 2.1. The next result validates the monotone iterative process. Thét i8”") minimizes the total
discounted cost.

Proposition 3.5. The solution(v™, Z™) of (26) is the minimum total discounted cost, i.&! () = infq: 4, <m J (O,
m,q) andv™ =infg: 4, <m J(1,6, Q).

SinceZ™ () andv™ are defined as a solution of (26) and they are given by the infima in Proposition 3.5, both
Z™(m) andv™ are unique. Asn increases, we have @if, <, J(0,7,q) | infq J(O, 7, ) and inf; 4, < J(A, T, Q) |
infq J(1, w, ). These imply the last statement in Theorem 3.4.

4. Partially observed inventory dueto information delays

Here we consider partial observability arising from information delays. The current inventory level is not observed
by the IM. Instead, he observes the exact inventory level of a prior period. This model enables us to find a sufficient
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statistic. It is important to allow for backordering of the immediately unmet demand to obtain the sufficient statistic.
Hence,l, 11 = I; +q; — D; for t > 1. We suppose that the demansare i.i.d. and us&®’ to denote the sum af
demands. To initialize the inventory to start its evolution, we assumdhgknown atr = 1.

Let 0 > 0 be the amount of the delay al := max{t — ¢, 1}. The observed signa}, = I, at timer denotes
the last inventory level observed in periodThe signal observed at the beginning of periagenerates the sigma
algebraZ, = o ({z1; z2; ...; z:}). However, the underlying and unobserved state at tine, and generates the
sigma algebrd;. Clearly, Z; C F;. The expression for the total discounted cosk(g) := Zlea’*lEc(I,, q:). The
objective is to minimize/ (q) over the class of admissible ordersdapted toz;.

We define theeference inventory positioasx; := z; + th‘:}gl gj, which can be obtained from the information
in Z;. The evolution equation fox; is x;41 = x; + ¢; — Lg<,—1D:—¢. Moreover, the unobservel can be expressed
in terms of the observed, i.e., I, = x, — Z;;}gt D;.

By a sequence of conditioning arguments, we obi(Y;, ¢;) = Ec'~# (x;, g;), wherec! (x, g) := Ec(x — D', q).
Thus, the single-period costs can be computed in terms of the reference inventory position and the objective becom
Zthl o' TEc' P (x,, ¢;). This shows thatk, is a sufficient statistic for our problem. Moreover, we have a problem
in the form of a standard inventory problem with the statewith the single-period nonstationary cost function
c'Pi(x;, q;), and with the sigma algebid,. Therefore, we can directly write the associated DP equation starting with
Vry1(x) =0:

infq>oc”l(x, q)+aVii(x +q) forr <9,
Vi(x) = >0

infq>oce(x, q) +aEV,i1(x+g — D) fort + 1

The one-period cost (x, ¢) can typically be written asq + EH (x — D'), where the first terme > 0 (second

term H(-)) represents the ordering (inventory) cost. Suppose that the inventory cost is convex, then a base-stock tyy
policy is optimal:

argmin, cu + Vi41(u) forr <6,

<
g (x) =@ —x)", whereu’ := _
argmin, cu + EV;y1(u — D) fort>6+ 1.

We can extend our results to the case of delays given to be a Markov process. In that case, the reference inventc
position along with the value of the latest delay observation and the age of this observation are sufficient statistics fc
finding the optimal order quantities. These sufficient statistics are of dimension three whereas the state space of t
associated DP is in general infinite dimensional. The optimal ordering policy remains to be of base stock type witf
respect to the reference inventory position. However, the base stock levels depend now on the value of the latest del
observation and the age of this observation.
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