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Abstract

This Note introduces recent developments in the analysis of inventory systems with partial observations. The state
systems are typically conditional distributions, which evolve in infinite dimensional spaces over time. Our analysis involv
ducing unnormalized probabilities to transform nonlinear state transition equations to linear ones. With the linear equa
existence of the optimal feedback policies are proved for two models where demand and inventory are partially obser
third model where the current inventory is not observed but a past inventory level is fully observed, a sufficient statistic is
to serve as a state. The last model serves as an example where a partially observed model has a finite dimensional s
model, we also establish the optimality of the basestock policies, hence generalizing the corresponding classical model
information.To cite this article: A. Bensoussan et al., C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Contrôle optimal des stocks avec information partielle. On présente un certain nombre de modèles de systèmes de stock
information partielle. Ils sont formalisés comme des problèmes de contrôle où l’état est une probabilité conditionnelle,
espace de dimension infinie. On introduit des probabilités non normalisées, permettant de transformer des équations no
en équations linéaires. On peut alors montrer l’existence de feedbacks optimaux pour deux modèles où la demande et le
partiellement observables. Dans un troisième modèle, le stock n’est pas observé, mais un stock antérieur est observé. Un
exhaustive est obtenue, et l’état est de dimension finie. On établit l’optimalité des politiques « stock de base », génér
modèles classiques avec information complète.Pour citer cet article : A. Bensoussan et al., C. R. Acad. Sci. Paris, Ser. I 341
(2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Bien que la gestion des stocks ait été l’objet d’une littérature considérable, la situation où l’information est p
n’a pratiquement pas été abordée jusqu’à présent. On montre, sur un certain nombre de modèles, comment
féconde des probabilités conditionnelles non normalisées, introduites dans le filtrage non linéaire par Zakaï
adaptée et permet d’établir l’existence de politiques optimales. Les problèmes à traiter sont du type suivant
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1631-073X/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2005.08.003
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πt+1(x) = 1zt=qt

∫ ∞
qt

πt (ξ)p(x|ξ)dξ∫ ∞
qt

πt (ξ)dξ
+ 1zt<qt p(x|zt ), (1)

où p(x|ξ) est la probabilité de transition d’une chaîne de Markov,zt est le processus observé,qt le contrôle adapté
Zt−1 et πt (x) est une probabilité conditionnelle qui représente l’état du système. L’équation de Bellman asso
donnée par

V (π) = min
q

{∫
L(x, q)π(x)dx + αV

(∫ ∞
q

p(·|ξ)π(ξ)dξ∫ ∞
q

π(ξ)dξ

) ∞∫
q

π(ξ)dξ + α

q∫
0

V
(
p(·|ξ)

)
π(ξ)dξ

}
. (2)

La linéarisation est obtenue par les Éqs. (8)–(10) ci dessous. Un principe de contraction peut s’appliqu
et permet de résoudre aussi (2), et d’obtenir un feedback optimal. Un problème beaucoup plus complexe
par les Éqs. (19), (22), (23). Là aussi, la linéarisation simplifie considérablement, même si le principe de con
ne s’applique plus. On prouve l’existence d’une solution maximale qui s’interprète comme la fonction vale
problème de contrôle. On construit une suite de contrôles feedback formant une suite minimisante (le feedbac
peut ne pas être atteint).

1. Introduction

Inventory control is one of the most important topics in operations research. A systematic analysis of in
problems began with the development of the classical EOQ formula of Harris in 1913 [9] and a significant
was reached in 1958 by Arrow, Karlin and Scarf [1]. A critical assumption in this vast literature has been that t
of inventory at any given time is fully observed. Some of the most celebrated results such as the optimality
stock or (s, S) policies have been obtained under the assumption of full observation. Most of the well-known inv
policies are not only non-optimal, but are also not applicable in the partial observation environment. While on
with a finite dimensional state space in the full observation case, one usually has to deal with an infinite dim
state space in the partial observation setting. In particular, in the full observation cases the inventory level is
state variable, whereas with the partial observations, the system state is typically the conditional distributio
inventory level given the partial observations.

It is the purpose of this paper to introduce some techniques, reminiscent of the Zakai equation [11] in st
control, for the analysis of inventory control with partial observations. The Zakai equation uses a transforma
changes the highly nonlinear Kushner equation [10] for evolution of probability distributions over time into a
equation. While the transformation does not remove the infinite dimensionality, the linearity permits a num
important control problems with partial observations to be solved. On the other hand, some inventory mo
admit a finite dimensional sufficient statistic. For a specific inventory model, this statistic turns out to be the
inventory level in an earlier period plus all of the inventory orders made since that period. When there exists a s
statistic, the well-known optimal ordering policies are more likely to remain valid.

In Sections 2 and 3, we introduce two separate inventory models, both of which benefit from the derivat
Zakai-type equation. In Section 4, we provide an inventory model which admits a sufficient statistic. Sections
respectively based on [5,3,4] and [6].

2. Partially observed demand due to censoring

Although many inventory models assume a static and a known demand distribution, this distribution in
can change over time and so it is likely to be unknown. The distribution needs to be updated based on the
observations. Ding et al. [7] study a multiperiod newsvendor model with Bayesian updating of demands. Spe
the demand is observedonly when it is less than the inventory level, i.e., unmet demand iscensored. Consequently
the state of the system is the distribution of the demand characterized by a parameter, which is updated in ea
based on the partial observation of the demand at that time. Ding et al. assume that the demands are inde
and identically distributed. On the contrary, in this section we do not make any assumption on the demand dis
or correlation between the demands in different periods, except that it is a Markov process. Furthermore, we
a Zakai-type equation [11] for the evolution of the conditional probability distribution of the demand over time
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facilitates the analysis of the dynamic programming equation for the problem. We establish that the value fu
the unique solution of the DP equation and that there exists an optimal feedback policy for the problem.

We now formally define our problem. Let(Ω,F ,P) be the probability space and lett � 1 be the indices for th
periods. LetDt � 0 denote the demand occurring at the beginning of periodt . The demand is modelled by a Marko
process with the transition probabilities given byp(x, ξ) := P(Dt+1 = x|Dt = ξ). The inventory available to satisf
the demandDt , or a part thereof, is calledqt . Like [7], we assume that the excess inventory at the end of each p
is salvaged and the unmet demand in a period is lost. Thus,qt can also be thought as the order placed and deliver
the beginning of periodt before the demandDt arrives. Then the amountzt of sales is given by

zt := min{Dt, qt }. (3)

WhenDt < qt , the demand is met and therefore observed. On the other hand, whenDt � qt , the inventory is no
sufficient to meet the demand in periodt . Then, the amount of sales is onlyqt andDt − qt is the unmet demand
When the demand is not met, the unmet demand is not observed by the inventory manager (IM). LetZt denote the
sigma algebraZt := σ({z1, . . . , zt }). SinceZt ⊆ σ({D1, . . . ,Dt }), we have a partially observed inventory model.

Let the functionL(D,q), which depends on the demandD and the available inventory levelq, denote the one
period cost function:

L(D,q) =
{

cq − h(q − D) if D � q

cq + b(D − q) if q � D

}
, (4)

whereh, c andb are, respectively, the salvage value per unit, the ordering cost per unit, and the shortage cost
It is reasonable to assume that 0� h < c < b.

With the discount factor 0< α < 1 and withq defining the sequence of order quantitiesq = {q1, q2, . . .}, with qt

adapted toZt−1, our objective is to minimize

J (q) :=
∞∑
t=1

αt−1
EL(Dt , qt ). (5)

We take the initial distribution ofD1 as given to start the process. Note thatq1 is determined with certainty at th
beginning of period 1. This completes the definition of our problem.

We start by studying the evolution of the demand distribution. Letπt denote the conditional probability dens
function ofDt . Sinceπt+1 is updated fromπt andZt , it is obvious thatπt+1 is Zt -measurable. When an integral
taken over[0,∞), we suppress the limits to save on the notation.

Using probabilistic arguments, we obtain the random density measureπt+1 in terms ofπt :

πt+1(x) = 1zt=qt

∫ ∞
qt

πt (ξ)p(x|ξ)dξ∫ ∞
qt

πt (ξ)dξ
+ 1zt<qt p(x|zt ). (6)

With this distribution as the state variable, we now proceed to derive the dynamic programming equation
problem.

2.1. Bellman equation with normalized and unnormalized probabilities

We begin with the expected total costs occurring in the current periodt , i.e., EL(Dt , qt ) = ∫
L(x, qt )πt (x)dx.

Eq. (6) implies that the future costs should have two terms depending on whether the demand is observed.
demand is not observed, the future costs depend on the first term on the right-hand side of (6). Otherwise, the
on the second term. Summing up the current and future costs that result in by orderingq yields the terms inside th
curly brackets in the Bellman equation below:

V (π) = min
q

{∫
L(x, q)π(x)dx + αV

(∫ ∞
q

p(·|ξ)π(ξ)dξ∫ ∞
q

π(ξ)dξ

) ∞∫
q

π(ξ)dξ + α

q∫
0

V
(
p(·|ξ)

)
π(ξ)dξ

}
. (7)

This equation yields the optimalq as a function of the current knowledge summarized inπ about the demand. Th
state transition equations can be linearized as we illustrate next.
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We begin with (6) and develop what is known as the unnormalized probability. Its dynamics is similar to the
equation obtained in the filtering literature [11].

Taking a cue from (6), we defineρt (x) by the recursive linear equation

ρt+1(x) = 1zt=qt

∞∫
qt

p(x|ξ)ρt (ξ)dξ + 1zt<qt p(x|zt ) for t � 1, (8)

with the initial valueρ1(x) = ρ(x) = π(x). Eq. (8) corresponds to the Zakai equation for systems with diffus
in [11] and [2]. Also setλt := ∫

ρt (x)dx. Then we haveλ1 = 1 andλt+1 = 1zt=qt

∫ ∞
qt

ρt (ξ)dξ + 1zt<qt for t � 1,
which follows directly from integrating the left-hand side of (8) over[0,∞). Moreover,ρt (x) = πt (x)λt , whereλt is
a weighting factor which allows us to recover normalized probabilities.

We define, for any positiveL1 functionρ,

W(ρ) := V

(
ρ∫

ρ(x)dx

)∫
ρ(x)dx. (9)

We use (7) and (9) to obtain a recursive equation forW :

W(ρ) = min
q

{∫
L(x, y)ρ(x)dx + αW

( ∞∫
q

p(·|ξ)ρ(ξ)dξ

)
+ α

q∫
0

W
(
p(·|ξ)

)
ρ(ξ)dξ

}
. (10)

From the linearity inρ of the first term inside the minimum above, we can see thatW(0) = 0 andW is homogenous
of degree 1, i.e.,W(aρ) = aW(ρ) for a > 0. The right-hand side in the Bellman equation (10) has linear growth, w
facilitates the derivation of the existence results below.

2.2. Existence of an optimal feedback solution and monotone value functions

First we show that there exists a unique solution of the DP equation. For this, we define some norme
spaces. LetH := {ρ ∈ L1(�+):

∫
x|ρ(x)|dx < ∞}, whereL1(�+) is the space of integrable functions who

domain is the set of nonnegative real numbers.H is a subspace ofL1(�+). Since we are interested in nonne
ative unnormalized probabilities, we defineH+ = {ρ ∈ H | ρ � 0}, a closed subset ofH with the norm‖ρ‖ =∫ |ρ(x)|dx + ∫

x|ρ(x)|dx. Let us also define the spaceB = {φ(ρ): H+ → � | supx>0 |φ(ρ)|/‖ρ‖ < ∞} with the
norm‖φ‖B = supρ∈H+ |φ(ρ)|/‖ρ‖.

We assume that for anyµ ∈ B,
∫

x
∫

p(x|ξ)µ(ξ)dξ dx � c̄
∫

ξµ(ξ)dξ with αc̄ < 1. We also define the mapT (W)

as

T (W)(ρ) := min
q

{∫
L(x, y)ρ(x)dx + αW

( ∞∫
q

p(·|ξ)ρ(ξ)dξ

)
+ α

q∫
0

W
(
p(·|ξ)

)
ρ(ξ)dξ

}
. (11)

The next theorem summarizes the results.

Theorem 2.1. If there exists a solutionW(ρ) of (10), it is in B. Furthermore,‖T (W) − T (W̃ )‖B � α max{1, c̄} ×
‖W − W̃‖B. Thus, there exists one and only one solutionW(ρ) of the Bellman equation(10). Moreover,W(ρ) is
continuous at eachρ ∈ H+ and there exists an optimal feedback policy.

Using a value iteration based on (10), we can deduce thatW(ρ) is monotone increasing and concave inρ. More
interestingly, the total discounted costV (π) is smaller when the demand is believed to be smaller in the hazar
order. We also say that linear operatorP(π) defined byP(π) := ∫

p(·|ξ)π(ξ)dξ is hazard rate order preserving
P(π) � P(π ′) holds for allπ andπ ′ with π � π ′.

Theorem 2.2. V (π) � V (π ′) if π is smaller thanπ ′ in the hazard rate order andP(π) is hazard rate order preserving
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3. Partially observed inventory due to zero-balance walk

In this section, the demand has a known distribution but the inventory levelIt at the beginning of periodt is given
by

It+1 = (It + qt − Dt)
+ for t � 1. (12)

In every periodt , demandDt is met, to the extent possible, from the on-hand stockIt + qt . When the demand i
met entirely, inventory holding costs apply to the remaining inventory. Otherwise, there are lost sales costs. We
demandDt to be i.i.d. A generic demand is denoted byD, which is i.i.d. with eachDt . Let f denote the density an
F denote the cumulative distribution ofD. Let 	F = 1− F .

In classical inventory settings, the inventory levelIt is observed, and is used to determine the order quantityqt in
periodt . In this section, the IM does not automatically observe the inventory level due to transaction errors, mi
inventories, spoilage or production yield. The inventory level is observed only when there is no physical inv
When there is inventory, only the event that the inventory is positive is observed. We continue to usezt to denote the
observed signal, which in this context is

zt := 1It=0, t � 0. (13)

The signalzt is a discrete-time Markov Chain with the state space{0,1}: 1 means an empty inventory shelf and
means a nonempty shelf. This observation process mimics what is known as ‘zero-balance walk’ [8] at som
panies where employees walk around the shelves to identify the stocked-out items and verify the inventory l
those items.

The orderqt is adapted toZt := σ({zj : 1 � j � t}). ClearlyZt ⊂ Ft := σ({Ij : 1 � j � t}). Given a stationary
cost functionc(It , qt ) that depends on the inventory levelIt and the order sizeqt , and withq defining the admissible
order quantities, the total discounted cost is defined by

J (ζ,π,q) :=
∞∑
t=1

αt−1
Ec(It , qt ). (14)

The initial conditions are a pair(ζ,π(x)), whereζ is 1 or 0. If ζ is 1, thenI1 = 0. If ζ is 0, thenI1 > 0 andπ(·) is
the probability distribution ofI1. We look forqt , adapted toZt , t � 0, to minimizeJ (ζ,π,q).

3.1. Evolution of state probabilities

We now develop the conditional probability densityπt (·) of It givenZt−1 andIt > 0. Derivation ofπt in this case
is more involved than in Section 2, so we furnish more details. By definition,

∫ x

0 πt (y)dy = P(It � x|Zt−1, It > 0).
Since the event[It = 0] is observable, conditional probabilities are needed only whenIt > 0. We can obtain

∞∫
0

φ(x)πt (x)dx = E
[
φ(It )|Zt−1, It > 0

] = E[φ(It )1It>0|Zt−1]
E[1It>0|Zt−1] , (15)

whereφ is an arbitrary test function. In order to obtain a recursive expression forπt in terms ofπt−1, we begin with
expressingE(φ(It )|Zt ) in terms of conditional expectations with respect toZt−1 in the next two lemmas.

Lemma 3.1.

E
(
φ(It )|Zt

) = 1It=0φ(0) + 1It>0
E(φ(It )1It>0|Zt−1)

P(It > 0|Zt−1)
= 1It=0φ(0) + 1It>0E

(
φ(It )|Zt−1, It > 0

)
. (16)

Lemma 3.2.

E
(
φ(It )|Zt

)
1It>0 = 1It−1=0

∫ ∞
0 φ(z)f (qt−1 − z)1qt−1�z dz

F (qt−1)

+ 1It−1>0

∫ ∞
0 φ(z)

∫ ∞
(z−qt−1)

+ f (y + qt−1 − z)πt−1(y)dy dz∫ ∞
0 F(y + qt−1)πt−1(y)dy

. (17)
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Going back to the conditional probabilityπt , we may writeE(φ(It )|Zt ) = 1It=0φ(0) + 1It>0
∫ ∞

0 φ(z)πt (z)dz.
Equating the second term on the right-hand side of this equality to (17), we get

πt (x) = 1It−1=0

{
f (qt−1 − x)1x�qt−1

F(qt−1)

}
+ 1It−1>0

{∫ ∞
(x−qt−1)

+ f (y + qt−1 − x)πt−1(y)dy∫ ∞
0 F(y + qt−1)πt−1(y)dy

}
. (18)

Equivalently, the conditional probability evolves according to the highly nonlinear equation

πt (x) = zt−1
f (qt−1 − x)1x<qt−1

F(qt−1)
+ (1− zt−1)

∫ ∞
(x−qt−1)

+ f (y + qt−1 − x)πt−1(y)dy∫ ∞
0 F(qt−1 + y)πt−1(y)dy

,

t � 2, π1(x) = π(x), (19)

which corresponds to the Kushner equation [10] in our inventory context.
For linearizing (19), we setρt (x) := λtπt (x). On account of this weighting,ρt (x) becomes the unnormalize

probability and it evolves according to the linear equation

ρt (x) = zt−1f (qt−1 − x)1x<qt−1 + (1− zt−1)

∞∫
(x−qt−1)

+
f (y + qt−1 − x)ρt−1(y)dy, ρ1(x) = π(x). (20)

By integrating both sides ofρt (x) = λtπt (x), we getλt = zt−1F(qt−1) + (1 − zt−1)λt−1
∫

F(qt−1 + y)πt−1(y)dy

which is a linear equation definingλt recursively starting withλ1 = 1. However, note thatλt depends onπt−1. The
normalized probabilities can easily be computed from the unnormalized probabilities byπt (x) = ρt (x)/

∫
ρt (x)dx.

The evolution equations can be written in the operator form in the spaceH and its dual spaceH∗ =
{φ: supx>0 |φ(x)|/(1+ x) < ∞}. Furthermore,〈ρ,φ〉 = ∫ ∞

0 ρ(x)φ(x)dx for ρ ∈H, φ ∈H∗.
For any scalarq > 0, define the linear operatorΦ fromH toH asΦ(q,ρ)(x) = ∫ ∞

(x−q)+ f (y +q −x)ρ(y)dy. Note
thatΦ(q, δ)(x) = f (q − x)1x<q soΦ(0, δ)(x) = 0 for the Dirac delta functionδ. Define the nonlinear operatorΨ as

Ψ (q,ρ) = Φ(q,ρ)

〈Φ(q,ρ),1〉 . (21)

With these notations and the initial conditionsπ1 = ρ1 = π , we can write (19) and (20) in the operator for
πt = zt−1Ψ (qt , δ) + (1 − zt−1)Ψ (qt ,πt−1) andρt = zt−1Φ(qt , δ) + (1 − zt−1)Φ(qt , ρt−1). We emphasize that th
second equality is linear, while the first is nonlinear.

3.2. The Bellman equation

We write πt [q] to emphasize the dependence of the stateπt on the control policy. We assume thatc(It , qt ) has
linear growth inIt for every fixedqt , i.e.,c(·, qt ) ∈H∗. The cost function is:

J (ζ,π,q) =
∞∑
t=1

αt−1
E

[
E

[
c(·, qt )|Zt

]] =
∞∑
t=1

αt−1
E

{
zt c(0, qt ) + (1− zt )

〈
c(·, qt ),πt [q]〉}

whereπt [q] is given by (19). Recall that the initial conditionsζ1 = ζ ∈ {0,1} andπ1 = π are given. We now stud
only the discounted infinite horizon cost, so the time indext is suppressed. We define the value functionV (ζ,π) :=
infq J (ζ,π,q).

If we write v := V (1,π) which, in fact, is not dependent onπ , andV (π) := V (0,π), then we obtain the following
system:

V (π) = inf
q

{〈
c(·, q),π

〉 + αv

∫
	F(y + q)π(y)dy + αV

(
Ψ (q,π)

)
F(y + q)π(y)dy

}
, (22)

v = inf
q

{
c(0, q) + αv	F(q) + αV

(
Ψ (q, δ)

)
F(q)

}
. (23)

The study of the system in (22), (23) simplifies considerably when working with the unnormalized prob
ρ ∈ H+. Towards that end, we define a new value functionZ(·): Z(ρ) := V (ρ/λ)λ andλ := ∫

ρ(x)dx. We obtain the
following new system of equations:
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Z(ρ) = inf
q

{〈
c(·, q), ρ

〉 + αv

∫
	F(y + q)ρ(y)dy + αZ

(
Φ(q,ρ)

)}
, (24)

v = inf
q

{
c(0, q) + αv	F(q) + αZ

(
Φ(q, δ)

)}
. (25)

The pair(v,Z(p)) is the solution of (24), (25). We haveZ(0) = 0 andZ is homogenous of degree 1. Unlike t
operatorΨ , Φ is a linear operator.

3.3. Existence of a solution to the Bellman equation

For the existence results, we bound the single period cost. Suppose that positive constantsc, c0, c1, andh are such
that cq < c(x, q) � c0 + c1q + hx for x � 0, wherec0 can be interpreted as the maximum expected lost sales
that can be incurred in a period. Indeed, we setc0 = c(0,0).

We need some short-hand notation: Define the functionK :� × H × � × B → � as K(q,ρ;v,Z) :=
〈c(·, q), ρ(·)〉+αv

∫ 	F(y + q)ρ(y)dy +αZ(Φ(q,ρ)). Forρ = δ, K(q, δ;v,Z) = c(0, q)+αv	F(q)+αZ(Φ(q, δ)).
Define the mapT :� × B → � × B asT (v;Z(ρ)) := (infq K(q, δ;v,Z); infq K(q,ρ;v,Z)). Define(Z0(ρ), v0) as
the value function whenq = 0. Then, we have respectively〈c(·,0), ρ〉+αv0

∫ 	F(y)ρ(y)dy +αZ0(Φ(0, ρ)) = Z0(ρ)

andv0 = c0 + αv0.

Lemma 3.3. Z0 exists and is uniquely defined inB.

Note thatT (v0;Z0(ρ)) � (v0;Z0(ρ)) andT (v;Z(ρ)) � (v;Z(ρ)). These inspire a value iteration scheme wh
yields(v̄, 	Z).

Theorem 3.4. (v̄, 	Z) is a solution of (24), (25)and 0 � v̄ � v0, 0 � 	Z(ρ) � Z0(ρ). Moreover, it is the maxima
solution satisfying(v;Z) = T (v;Z). Also	Z(π) = infq J (0,π,q) and v̄ = infq J (1,π,q).

Owing to the last statement,	Z(π) andv̄ are interpreted as the infima of the costs. This, however, does not
the existence of a feedback policy unless the order quantityq is bounded. When the optimalq is bounded in terms
of ρ, the bound can be arbitrarily large asρ → 0. Because of this, we choose to assume a bound onq in addition to
the cost bounds in the previous section. Let the maximum production capacity bem and let the correspondingZ andv

be denoted byZm andvm. Then (24), (25) is written as

Zm(ρ) = inf
q�m

{〈
c(·, q), ρ

〉 + αvm

∫
	F(y + q)ρ(y)dy + αZm

(
Φ(q,ρ)

)}
,

(26)
vm = inf

q�m

{
c(0, q) + αvm 	F(q) + αZm

(
Φ(q, δ)

)}
.

We can check that constantsAm andBm exist such that|Zm(ρ)−Zm(ρ′)| � Am
∫ |ρ(y)−ρ′(y)|dy +Bm

∫
y|ρ(y)−

ρ′(y)|dy for any twoρ,ρ′ ∈ H. Therefore,Zm is Lipschitz continuous onH. This additional smoothness prope
allows us to establish the uniqueness of a solution to the system in (26) in the absence of a contraction pro
T as in Theorem 2.1. The next result validates the monotone iterative process. That is,(vm,Zm) minimizes the tota
discounted cost.

Proposition 3.5. The solution(vm,Zm) of (26) is the minimum total discounted cost, i.e.,Zm(π) = infq: qt�m J (0,

π,q) andvm = infq: qt�m J (1, δ,q).

SinceZm(π) andvm are defined as a solution of (26) and they are given by the infima in Proposition 3.5
Zm(π) andvm are unique. Asm increases, we have infq: qt�m J (0,π,q) ↓ infq J (0,π,q) and infq: qt�m J (1,π,q) ↓
infq J (1,π,q). These imply the last statement in Theorem 3.4.

4. Partially observed inventory due to information delays

Here we consider partial observability arising from information delays. The current inventory level is not ob
by the IM. Instead, he observes the exact inventory level of a prior period. This model enables us to find a s
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statistic. It is important to allow for backordering of the immediately unmet demand to obtain the sufficient s
Hence,It+1 = It + qt − Dt for t � 1. We suppose that the demandsDt are i.i.d. and useDi to denote the sum ofi
demands. To initialize the inventory to start its evolution, we assume thatI1 is known att = 1.

Let θ � 0 be the amount of the delay andβt := max{t − θ,1}. The observed signalzt = Iβt at time t denotes
the last inventory level observed in periodt . The signal observed at the beginning of periodt generates the sigm
algebraZt = σ({z1; z2; . . . ; zt }). However, the underlying and unobserved state at timet is It and generates th
sigma algebraFt . Clearly,Zt ⊆ Ft . The expression for the total discounted cost isJ (q) := ∑T

t=1 αt−1
Ec(It , qt ). The

objective is to minimizeJ (q) over the class of admissible ordersq adapted toZt .
We define thereference inventory positionasxt := zt + ∑t−1

j=βt
qj , which can be obtained from the informati

in Zt . The evolution equation forxt is xt+1 = xt + qt − 1θ�t−1Dt−θ . Moreover, the unobservedIt can be expresse
in terms of the observedxt , i.e.,It = xt − ∑t−1

j=βt
Dj .

By a sequence of conditioning arguments, we obtainEc(It , qt ) = Ect−βt (xt , qt ), whereci(x, q) := Ec(x −Di, q).
Thus, the single-period costs can be computed in terms of the reference inventory position and the objective∑T

t=1 αt−1
Ect−βt (xt , qt ). This shows thatxt is a sufficient statistic for our problem. Moreover, we have a prob

in the form of a standard inventory problem with the statext , with the single-period nonstationary cost funct
ct−βt (xt , qt ), and with the sigma algebraZt . Therefore, we can directly write the associated DP equation starting
VT +1(x) = 0:

Vt (x) =
{

infq�0 ct−1(x, q) + αVt+1(x + q) for t � θ,

infq�0 cθ (x, q) + αEVt+1(x + q − D) for t � θ + 1.

The one-period costci(x, q) can typically be written ascq + EH(x − Di), where the first termc > 0 (second
termH(·)) represents the ordering (inventory) cost. Suppose that the inventory cost is convex, then a base-s
policy is optimal:

q∗
t (x) = (u∗

t − x)+, where u∗
t :=

{
arg minu cu + Vt+1(u) for t � θ,

arg minu cu + EVt+1(u − D) for t � θ + 1.

We can extend our results to the case of delays given to be a Markov process. In that case, the reference
position along with the value of the latest delay observation and the age of this observation are sufficient stat
finding the optimal order quantities. These sufficient statistics are of dimension three whereas the state spa
associated DP is in general infinite dimensional. The optimal ordering policy remains to be of base stock ty
respect to the reference inventory position. However, the base stock levels depend now on the value of the la
observation and the age of this observation.
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