

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 341 (2005) 405-408

http://france.elsevier.com/direct/CRASS1/

Complex Analysis

Tchebotaröv's problem

Promarz Tamrazov

Institute of Mathematics, National Academy of Sciences of Ukraine, Tereshchenkivska Str. 3, 01601 Kiev, Ukraine Received 25 November 2004; accepted after revision 26 August 2005

Presented by Pierre Lelong

Abstract

We give a complete solution to the extremal problem posed by N.G. Tchebotaröv in the mid 1920s, and we establish explicit parametric formulae for the extremals. *To cite this article: P. Tamrazov, C. R. Acad. Sci. Paris, Ser. I 341 (2005).* © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Problème de Tchebotarov. Nous donnons une solution complète du problème extrémal ayant posé par N.G. Tchebotarov vers 1920s, et nous établissons des formules explicites paramétriques pour les extrémales. *Pour citer cet article : P. Tamrazov, C. R. Acad. Sci. Paris, Ser. I 341 (2005).*

© 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

In 1929 Polya [8] discussed the extremal problem earlier posed by Tchebotaröv. We formulate it in the well-known equivalent form: among all univalent conformal mappings f of the unit disk $K := \{z \in \mathbb{C} : |z| < 1\}$ of the complex plane \mathbb{C} into the plane \mathbb{C} punctured at a finite number of fixed points $a_1, \ldots, a_m \in \mathbb{C} \setminus \{0\}$, with f(0) = 0, find f for which the functional |f'(0)| achieves its maximal value.

The first essential results in the Tchebotaröv's problem were obtained by Lavrentiev [6,7] and Grötzsch [3] in 1930. Later Goluzin [1] and [2, p. 152–157] further developed these investigations. Besides existence and uniqueness of the extremal function f, these authors established also some qualitative and structural properties of the extremal and the following functional-differential equation for it (see [6,7,3,1] and [2, pp. 152–157]):

$$\left(\frac{zf'(z)}{f(z)}\right)^2 = \frac{p(f(z))}{q(f(z))},\tag{1}$$

where $p(w) := \prod_{j=1}^{m} (a_j - w)$, and q is a polynomial on $w \in \mathbb{C}$ of the degree m - 1 with $q(0) = \prod_{j=1}^{m} a_j$. Moreover, f is regular also on ∂K except a finite number of points, and the set $B := \overline{\mathbb{C}} \setminus f(K)$ is connected and is a union of a finite number of (open) analytic arcs and their endpoints. From here there follows that the domain f(K) is admissible with respect to the quadratic differential

$$Q(w) dw^{2} := -\frac{q(w)}{w^{2} p(w)} dw^{2}$$
(2)

E-mail addresses: proma@imath.kiev.ua, tamrazov@gyte.edu.tr (P. Tamrazov).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2005.08.007

(for terminology and main facts concerning theory of quadratic differentials, see [4]).

However, Eq. (1) contains m - 1 complex-valued parameters (coefficients of q) whose values were unknown, and the problem of finding explicit formulae for the extremals of the Tchebotaröv's problem remained unsolved (see [2, p. 156; 9, p. 202]).

In the present work the author gives the general solution of the mentioned open problem – for any integer $m \ge 2$.

We emphasize that among numerous extremal problems generating quadratic differentials with a number of arbitrarily distributed fixed poles, it is the first case when the extremals are found in explicit form. And our methods enable also to solve a series of other extremal problems of the analogous nature.

Without any loss of generality we assume that all points a_1, \ldots, a_m in $\mathbb{C} \setminus \{0\}$ (cf. [7]) and $a_{m+1} = \infty$ are (simple) poles of $Q(w) dw^2$. Such a point collection $\{a_j\} := \{a_j\}_{j=1}^{m+1}$ will be called *normalized*. All points of a normalized collection are endpoints of the set *B* (see [6,7]). We may consider *B* as a graph on $\mathbb{C} \setminus \{0\}$ consisting of nodes of order one at all points a_j and only in them, nodes of orders $v_j + 2$ at all zeroes b_s of degrees $v_s \ge 1$, and only in them, and of all analytic trajectories of $Q(w) dw^2$ (contained in *B* and ending at zeros or simple poles of $Q(w) dw^2$) as edges of the graph. This curvilinear geometric graph is a tree, which we shall denote it by $L(\{a_j\})$. The total multiplicity of all zeroes of $Q(w) dw^2$ equals m - 1. Let now *k* be the number of *different* zeroes of $Q(w) dw^2$.

Now we shall construct a class of *explicitly* defined functions containing all extremals for the Tchebotaröv's problem and only them. This class will be parametrized by means of special geometric rectilinear graphs defined in the complex plane. Let *G* be the class of all finite, undirected, connected, simple plane graphs Γ each of which satisfies the following conditions: (i) each edge γ of Γ is a rectilinear open interval in \mathbb{C} of the length $|\gamma| > 0$, and these intervals mutually do not intersect each other, while nodes of the graph coincide with the endpoints of these intervals; (ii) Γ does not contain nodes of order 2 and cycles; (iii) the sum of lengths $|\gamma|$ of all intervals γ of the graph Γ equals π ; (iv) the point $\zeta = 0$ is a node of Γ of order 1, and the edge of Γ incident to this point is contained in the real half-axis Re $\zeta > 0$. Let Supp Γ denote the closure in \mathbb{C} of the geometric union of all edges of the graph $\Gamma \in G$. Starting at the node 0, let us run along Γ in the direction in which the complementary to Γ domain $\mathbb{C} \setminus (\text{Supp } \Gamma)$ remains on the left. Such a pass of Γ will be called *natural*. For every point ζ on an edge $\gamma \in \Gamma$, let $r_1(\Gamma, \zeta)$ and $r_2(\Gamma, \zeta)$ denote the length of the pass respectively to the first and the second reaching the point ζ , while $r_1(\Gamma, 0) = 0$, $r_2(\Gamma, 0) = 2\pi$. Under a single such pass along an edge γ the growth of each of functions r_1 and r_2 equals $|\gamma|$. For every node v of the order $\tau(v)$, let $r_1(\Gamma, v), \ldots, r_{\tau(v)}(\Gamma, v)$ denote the length until the first, $\ldots, \tau(v)$ th pass of v. For every $\zeta \in \text{Supp } \Gamma$ and all $j = 1, \ldots, \tau(\zeta)$ let us denote $\varepsilon_{\Gamma,j}(\zeta) := \exp(ir_j(\Gamma, \zeta))$.

Let Γ' be one more graph from G, and for every $\zeta' \in \text{Supp } \Gamma'$ the objects $\tau'(\zeta')$ and $\varepsilon_{\Gamma',j}(\zeta')$ be defined exactly as analogous objects were defined for Γ and $\zeta \in \text{Supp } \Gamma$. Then the graphs Γ and Γ' will be called *equivalent*, if there exists the isomorphism $\eta : \Gamma \to \Gamma'$ such that $\eta(0) = 0$ and for every node v of Γ we have

$$r_j(\Gamma',\eta(v)) = r_j(\Gamma,v) \quad \forall j = 1,\ldots,\tau(v).$$

If graphs $\Gamma, \Gamma' \in G$ are equivalent, then for every $\zeta \in \text{Supp } \Gamma$ there corresponds a uniquely defined $\zeta' \in \text{Supp } \Gamma'$ for which

$$\varepsilon_{\Gamma,j}(\zeta) = \varepsilon_{\Gamma',j}(\zeta') \quad \forall j = 1, \dots, \tau(\zeta).$$

For a graph Γ , let $V(\Gamma)$ be the set of all its nodes of order 1, and $W(\Gamma)$ be the set of all other its nodes (of orders ≥ 3). Let *V* be the set of all points $\varepsilon_{\Gamma,1}(p) (\in T)$, when *p* runs through the set $V(\Gamma)$. Denote by W_v the set of all points $\varepsilon_{\Gamma,j}(v) (\in T)$, when $v \in W(\Gamma)$ is fixed and *j* runs through the set of values $1, \ldots, \tau(v)$. Denote also $W := \bigcup_{v \in W(\Gamma)} W_v$. Clearly the point z = 1 is contained in *V*.

With any fixed branch of the below integrand continuous at the set $\overline{K} \setminus (W \cup \{1\})$, for $z \in \overline{K}$ let us consider the function

$$f(z) := \int_{0}^{z} (\zeta - 1)^{-3} \left(\prod_{\alpha \in V \setminus \{1\}} (\zeta - \alpha) \right) \prod_{v \in W(\Gamma)} \left(\prod_{\beta \in W_{v}} (\zeta - \beta)^{2 - \tau(v)} \right)^{1/\tau(v)} \mathrm{d}\zeta.$$
(3)

We have |f'(0)| = 1. Let f_K denote the restriction of f to K.

For a fixed graph $\Gamma \in G$ under the above notations and assumptions, we get the following result.

Theorem 1. The function f given by (3) is holomorphic and univalent in K, continuous in $\overline{K} \setminus \{1\}$, continuous in generalized sense (with respect to topology of $\overline{\mathbb{C}}$ in the image) on \overline{K} . For every point $\zeta_0 \in \Gamma$ the function f glues

rational-analytically all points $\varepsilon_{\Gamma,j}(\zeta_0)$ $(j = 1, ..., \tau(\zeta_0))$ into one point denoted by $y(\zeta_0)$, and f is continuously and meromorphically extendable into a neighbourhood of every point $z \in \overline{K} \setminus W$ (holomorphically for every $z \neq 1$). Moreover $f(\overline{K}) = \overline{\mathbb{C}}$, f(0) = 0, $f(1) = \infty$, and the function f_K is extremal in the Tchebotaröv's problem for the collection of all points a(p) := y(p) where p runs over the whole set $V(\Gamma)$. The extremal function in this problem for the mentioned collection of points a(p) is unique up to rotation of the disk K in the z-plane around the origin. The set of all simple poles of the quadratic differential $Q(w) dw^2$ given by (2) is normalized and hence coincides with the set of all m + 1 points a(p), including $y(0) = \infty$, while the set of all zeroes of $Q(w) dw^2$ coincides with the set of all points b(v) := y(v), where v runs over all k points of the set $W(\Gamma)$. Each point a(p) (including $a(0) = \infty$) is an endpoint of some single trajectory of $Q(w) dw^2$. The boundary of the domain f(K) with respect to $\overline{\mathbb{C}}$ is the union of m + k trajectories of $Q(w) dw^2$, their m + 1 endpoints $a(p) (\forall p \in V(\Gamma))$ and k points $b(v) (\forall v \in W(\Gamma))$.

Let $\Gamma \in G$ be the fixed graph from Theorem 1 with all related to it objects and notations (in particular, a(p) for all $V(\Gamma)$). Denote $L(\{a(p)\}) =: \Gamma_*$. Then we get the following result.

Theorem 2. The graph Γ_* is isomorphic to Γ , with the correspondence of the node $\zeta = 0$ of Γ to the node $w = \infty$ of Γ_* , and the pass of Γ_* in the direction in which the domain $\overline{\mathbb{C}} \setminus \Gamma_*$ remains on the left, corresponds to the pass of Γ in the natural direction. Then the length of every pass along Γ_* in the metric $|Q^{1/2} dw|$ equals to the length of its preimage on Γ with respect to the natural length measuring on Γ .

Thus the graphs Γ and Γ_* are isomorphic, equally oriented relative to their complementary (with respect to \mathbb{C}) domains and isometric in the sense of Theorem 2 (this isometry being consistent with the isomorphism and the direction of pass). From the definitions we see that for the equivalent graphs $\Gamma', \Gamma'' \in G$ and related to them objects corresponding to each other in this equivalence (including objects of the form $p, v, \varepsilon_{\Gamma,1}(p), \varepsilon_{\Gamma,j}(v), V(\Gamma), W(\Gamma)$ for these graphs), the objects $V, W, \tau(v), W_v, a(p), b(v), f$ of similar form coincide. Let \widetilde{G} denote the factor-set of G with respect to the equivalence. For a graph $\Gamma \in G$, let $\{\Gamma\}$ denote the class of all graphs from G equivalent to Γ .

Let N denote the set of all normalized point collections.

Let $H: \widetilde{G} \to N$ be the mapping defined for each $\widetilde{\Gamma}$ as a collection $\{f(p)\}_{p \in V(\Gamma)}$, where f is the function (3) defined for arbitrary $\Gamma \in \widetilde{\Gamma}$ and the corresponding $V(\Gamma)$.

Theorem 3. The class of all extremals of the Tchebotaröv's problem is parametrized by elements of the set \widetilde{G} and a positive number r, and this parametrization is one-to-one correspondence: (1) to every element $\widetilde{\Gamma} \in \widetilde{G}$ there corresponds one (and only one) normalized collection of points for which the function f_K with f given by (3) and corresponding to each graph $\Gamma \in \widetilde{\Gamma}$ is extremal in the Tchebotaröv's problem; and here we have |f'(0)| = 1; (2) and conversely, for every point collection $\{a_j\} \in N$ there exists one and only one class $\widetilde{\Gamma} \in \widetilde{G}$ and the unique positive constant r such that $H(\widetilde{\Gamma}) = \{a_j/r\}$ and the function rf_K with f defined by (3) for arbitrary $\Gamma \in \widetilde{\Gamma}$ is extremal in the Tchebotaröv's problem for $\{a_j\}$.

For m = 2 our results give that the restriction to K of the function

$$f(z) := \int_{0}^{z} \frac{(\zeta + e^{i\delta_2})(\zeta + e^{-i\delta_3}) d\zeta}{(\zeta - 1)^3 [(\zeta^2 - 2\zeta \cos \delta_1 + 1)(\zeta + e^{i(\delta_2 - \delta_3)})]^{1/3}}$$

with any constants $\delta_1 > 0$, $\delta_2 > 0$, $\delta_3 > 0$, under $\delta_1 + \delta_2 + \delta_3 = \pi$, is extremal in the Tchebotaröv's problem for the collection of points $a_1 = f(e^{i(\delta_1 + \delta_2)})$, $a_2 = f(e^{-i(\delta_1 + \delta_3)})$, $a_3 = f(1) = \infty$. For comparison mention that Kuz'mina [5] found the extremal for the case m = 2 as an implicit solution of a system of equations containing elliptic Jacobi functions.

References

^[1] G. Golusin, Method of variations in the theory of conform representation. I, Mat. Sb. 19 (61) (1946) 203–236 (in Russian).

^[2] G. Golusin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence, RI, 1969 (transl. from Russian).

- [3] H. Grötzsch, Über ein Variationsproblem der konformen Abbildung, Ber. Ferh. Sächs. Akad. Wiss. Leipzig 82 (1930) 251–263.
- [4] J. Jenkins, Univalent Functions and Conformal Mappings, Inostr. Lit., Moscow, 1962 (Russian transl.).
- [5] G. Kuz'mina, Covering theorems for functions holomorphic and univalent within a disk, Dokl. Acad. Nauk SSSR 160 (1965) 25–28 (in Russian).
- [6] M. Lavrentieff, Sur un probleme de maximum dans la representation conforme, C. R. Acad. Sci. Paris 191 (1930) 827-829.
- [7] M. Lavrentyev, On the theory of conformal mappings, Trudy Fiz.-Mat. Inst. Akad. Nauk SSSR 5 (1934) 159-246 (in Russian).
- [8] G. Polya, Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete, III, S.-B. Preuss. Akad. Wiss. Berlin (1929) 55–62.
- [9] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.