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Abstract

We prove exponential localization for the Schrödinger operator with a Poisson random potential at the bottom of the
in any dimension. We also prove exponential localization in a prescribed interval for all large Poisson densities. In add
obtain dynamical localization and finite multiplicity of the eigenvalues.To cite this article: F. Germinet et al., C. R. Acad. Sci.
Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur localization pour l’opérateur de Schrödinger avec un potentiel aléatoire de Poisson. On démontre localization expo
nentielle pour l’opérateur de Schrödinger avec un potentiel aléatoire de Poisson, pour les basses energies et en toute dim
démontre aussi localization exponentielle dans un intervalle d’énergies donné et à grande densité. On obtient de plus l
dynamique et le fait que la multiplicité des valeurs propres est finie.Pour citer cet article : F. Germinet et al., C. R. Acad. Sci.
Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Results

The Poisson Hamiltonian is the random Schrödinger operator on L2(Rd) given by

HX = −� + VX, with VX(x) =
∑
ζ∈X

u(x − ζ ), (1)
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where the single-site potentialu is a nonnegativeC1 function onR
d with compact support – without loss of general

we takeu(x) � u(0) = 1 – andVX is a Poisson random potential, that is,X is a Poisson process onRd with density
� > 0. Thus the configurationX is a random countable subset ofR

d , and, lettingNX(A) denote the number of poin
of X in the Borel setA ⊂ R

d , eachNX(A) is a Poisson random variable with mean�|A| (i.e., P�{NX(A) = k} =
(�|A|)k(k!)−1 e−�|A| for k = 0,1,2, . . .), and the random variables{NX(Aj )}nj=1 are independent for disjoint Bor
sets{Aj }nj=1. We will denote by(X ,P�) the underlying probability space for the Poisson process with density�.

Note thatHX is an ergodic (with respect to translations inR
d ) random self-adjoint operator. It follows that t

spectrum ofHX is the same forP�-a.e.X, as well as the decomposition of the spectrum into pure point, abso
continuous, and singular continuous spectra. Foru as above we actually getσ(HX) = [0,+∞[ for P�-a.e.X [8].

We prove exponential localization for Poisson Hamiltonians at the bottom of the spectrum. ByχB we denote the
characteristic function of the setB ⊂ R

d , with χx denoting the characteristic function of the cube of side 1 cent
atx ∈ R

d . We write〈x〉 = √
1+ |x|2, T (x) = 〈x〉ν for some fixedν > d

2 .

Theorem 1.1. Given� > 0, there existsE0 = E0(�) > 0 andm = m(�) > 0, such that forP�-a.e.X the following
holds: the operatorHX has pure point spectrum in[0,E0] with exponentially localized eigenfunctions with rate
decaym, i.e., ifφ is an eigenfunction ofHX with eigenvalueE ∈ [0,E0], there is a constantCφ < ∞ such that

‖χxφ‖ � Cφ e−m|x| for all x ∈ R
d . (2)

Moreover there exist constantsτ > 1, s ∈]0,1[ , andC < ∞, such that for eigenfunctionsψ,φ (possibly equal) with
eigenvalueE ∈ [0,E0] we have

‖χxψ‖‖χyφ‖ � C‖T −1ψ‖‖T −1φ‖e〈y〉τ e−|x−y|s for all x, y ∈ Z
d . (3)

In particular, the eigenvalues ofHX in [0,E0] have finite multiplicity, andHX exhibits dynamical localization i
[0,E0], that is, for anyp > 0 we have

sup
t

∥∥〈x〉p e−itHXχ[0,E0](HX)χ0
∥∥2

2 < ∞. (4)

For Poisson random potentials the density� is a measure of the amount of disorder in the medium. The
theorem gives localization at high disorder.

Theorem 1.2. GivenE0 > 0, there exists�0 > 0 such that for� > �0 the conclusions of Theorem1.1 hold in the
interval [0,E0].

While Poisson Hamiltonians are the most natural random Schrödinger operators in the continuum (the dis
of impurities in a material being naturally modeled by a Poisson process), a mathematical proof of the e
of localization has been a long-standing open problem. Localization has been known only in one dimensi
A Poissonian model, which incorporates random intensities with bounded densities and requires single-site p
that do not decay too slowly at infinity, was considered in [3].

In the multi-dimensional case, localization in the continuum had been proved for Anderson-type Hamiltonia
random intensities with bounded densities, e.g., [3], and for anR

d -ergodic Schrödinger operator with a Gaussian r
dom potential [4]; in both cases there is an “a priori” Wegner estimate obtained by averaging with bounded d
But recently Bourgain and Kenig [2] proved localization for the Bernoulli–Anderson Hamiltonian, with the W
estimate being proven in a multiscale analysis.

To prove Theorems 1.1 and 1.2 we exploit the new ideas introduced by Bourgain and Kenig [1,2]. In pa
the control of the resonances (the Wegner estimate) is achieved by a multiscale analysis using ‘free sites’ a
quantitative version of unique continuation which gives a lower bound on eigenfunctions.

The control on the eigenfunction correlations given in (3) was introduced in [7]. That (3) implies dynamica
ization is rather immediate. As for the finite multiplicity property, it follows by estimating∥∥χxχ{E}(HX)

∥∥2
2

∥∥χyχ{E}(HX)
∥∥2

2

from (3) and summing overx ∈ Z
d .
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In the next section we outline the main ideas in the proof of Theorem 1.1; detailed arguments will be given
Theorem 1.2 is proved in a similar way, although the proof requires some modifications.

2. The main ideas

Given a cubeΛ in R
d , we letHX,Λ = −�Λ+VX,Λ be the restriction ofHX toΛ with Dirichlet boundary condition

We consider the finite volume resolventRΛ(E) = (HΛ − E)−1 (we will omit X from the notation). Byc, c′, . . . we
denote positive constants (not necessarly the same) independent of�,L, . . . .

The multiscale analysis requires ana priori probabilistic estimate on the resolventRΛ(E) for all E ∈ [0,E0]
at a fixed, but sufficiently large, initial scaleL0, whereΛ is a cube of sideL0 centered at, say,x0. To obtain this
initial estimate for Theorem 1.1, we divide the cubeΛ into non-overlapping cubesΛ(j) of side�0 ≈ (�−1 logL0)

1/d

centered at pointsj ∈ x0 + �0Z
d . We consider configurations such that 1� N(Λ(j)) � ��0

d for all Λ(j), an event
with high probability, more precisely, with probability� 1− (L0/�0)

dL
−p

0 � 1− �L
−p+d

0 , where we can arrange fo
p large as desired.

For such configurations, we pick oneζj ∈ Λ(j), and split the potential asVΛ = V
(1)
Λ + V

(2)
Λ , with V

(1)
Λ =∑′

j u(x − ζj ), where
∑′

j denotes the sum over sitesj ∈ x0 + 2�0Z
d only; as a consequence theu(x − ζj ) in the

sum are non-overlapping. We have 0� V
(1)
Λ � 1 andV

(2)
Λ � 0. In order to estimate‖RΛ(E)‖, it is convenient to use

the operatorΓΛ(E), defined by

ΓΛ(E) = (H
(2)
Λ + 1)−1/2(1+ E − V

(1)
Λ )(H

(2)
Λ + 1)−1/2, with H

(2)
Λ = −�Λ + V

(2)
Λ � 0. (5)

Proceeding as in [2, Section 4], suppose‖ΓΛ(E)‖ > 1−E0 with E0 small. Then there isg ∈ L2(Rd), with 1−√
E0 �

‖g‖ � 1 and, usingV (2)
Λ � 0, ‖∇g‖ � 2E

1/4
0 , such that for eacha ∈ Λ we have

0� 〈τaV
(1)
Λ g,g〉 � cE

1/4
0 (|a| + 1), (6)

whereτa denotes translation bya and the estimate is uniform inL (cf. [2, Eqs. (4.7), (4.8), and (4.10)]). On the oth
hand, takingK = 10�0, and recalling the definition ofV (1)

Λ , we get (cf. [2, Eqs. (4.12) and (4.15)])∫
[−K,K]d

τa(V
(1)
Λ )da � cχΛL

with c > 0. (7)

Combining (6), (7), and the lower bound on‖g‖, we getc(1− √
E0)

2 � c′E1/4
0 Kd+1, which leads to a contradictio

for E0 ≈ �0
−(4(d+1)+) andL0 large.

We may thus conclude that if� is fixed,p > 0 is given,E ∈ [0,E0] with E0 ≈ (�−1 logL0)
−(4(d+1)/d+), andL0

is sufficiently large, then, with probability� 1 − L
−p

0 , we have‖RΛ(E)‖ � E−1
0 and‖χxRΛ(E)χy‖ � e−cL0 for

x, y ∈ Λ with |x − y| � L0
10 . Moreover, it is clear that ifV (2)

Λ = ∑
ζ∈Y u(x − ζ ), the results are still valid if we replac

V
(2)
Λ by

∑
ζ∈Y tζ u(x − ζ ) with arbitrarytζ ∈ [0,1]. We now declare all boxesΛ(j) with j /∈ x0 + 2�0Z

d (and hence

do not contribute toV (1)
Λ ) to befree boxes. Moreover, inside the free boxes we use the representation of the Po

processX by a thinned Poisson process (e.g., [9]), that is, by a Poisson processY with density 2� in such a way tha
to each Poisson pointξ ∈ Y is attached a Bernoulli random variableεξ , εξ = 0 or 1 with equal probability, and th
single-site contribution to the potential is given byεξu(x − ξ). Note that any siteξ ∈ Y in a free box is afree sitein
the sense of [2].

The multiscale analysis now proceeds by induction. IfΛ is a box of sizeL, we divide it into non-overlapping
cubesΛ(w) of side≈ e−L2

centered at pointsw ∈ e−L2
Z

d . With probability� 1−L−p , p large, we requireN(Λ) �
�Ld and all N(Λ(w)) � 1. We introduce an equivalence relation on Poisson configurationsXΛ in Λ; X̃Λ is the
collection of Poisson configurations inΛ that cannot be distinguished fromXΛ by the counting functionsN(Λ(w)).
The crucial observation is that if we change a Poisson configuration to another one in the same equivalence c
the eigenvalues ofHΛ in a fixed interval do not move by more than� e−L2

. We may thus consider only the case wh
the Poisson points inΛ are in the lattice e−L2

Z
d , since the desired results will then hold for the whole equivale

class. This reduction allows the use of the results in [2], using equivalence classes of Poisson configurations
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fixed Bernoulli configurations. Inside the free boxes equivalence classes are defined as above but for the Pois
in Y . Since we have a finite number of equivalence classes of configurations inside a free box, we fix the poin
Poisson processY in the free boxes, and conduct the analysis of [2, Lemma 5.1], “tuning” the free parametertξ to
εξ = 0 or 1 to obtain “good” configurations, with a probability estimated by Sperner’s Lemma using [2, Lemm
As in [2], we get the following result (cf. [2, Proposition A]), whereΛL denotes a cube of sideL.

Proposition 2.1. Given� > 0, there existsE0 = E0(�) > 0 andL0 = L0(�) < ∞, such that ifXΛL
(E) denotes the

Poisson configurations for which∥∥RΛL
(E)

∥∥ � eL1−
and

∥∥χxRΛL
(E)χy

∥∥ � e−cL for |x − y| � L

10
, (8)

then for allL � L0 and allE ∈ [0,E0] we have

P�

{
XΛL

(E)
}

� 1− 1

L(3/8)d− . (9)

Proposition 2.1 provides a single-energy multiscale analysis. The weak probability estimate in (9) does n
for an energy-interval multiscale analysis as in [11,6]. The first part of Theorem 1.1, namely exponential loca
requires the energy elimination scheme given in [2, Section 7]. To obtain the decay of the eigenfunction cor
given in (3) we add ideas from [7].
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