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Abstract

In this Note, it is shown that a Fourier Galerkin approximation of the Korteweg–de Vries equation with periodic bo
conditions converges exponentially fast if the initial data can be continued analytically to a strip about the real axis.To cite this
article: H. Kalisch, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Convergence rapide d’une projection de Galerkin pour l’equation de KdV. Dans cette Note, nous montrons que l’appro
mation donnée par une methode de Galerkin de type Fourier de l’équation de Korteweg–de Vries avec conditions a
périodiques converge de façon exponentielle si les donnes initiales peuvent être prolonges analytiquement sur une band
l’axe réel.Pour citer cet article : H. Kalisch, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

We are concerned with the rate of convergence of a spectral Galerkin approximation of solutions to the Ko
de Vries (KdV) equation

ut + uux + uxxx = 0. (1)

This equation was found by Boussinesq [2] and Korteweg and de Vries [8] as a model for the one-directiona
gation of surface water waves in a narrow channel. In this context, the assumptions include the long-wavele
small-amplitude requirements. Since its original introduction, the KdV equation has been found useful in a va
other contexts, such as internal waves, flow in blood vessels and plasma physics, to name just a few.

Even though the equation is exactly solvable by means of the inverse scattering transform, there has bee
erable interest in the numerical approximation of solutions of (1). There have been a number of successful n
schemes for the KdV equation. An interesting review of some of these methods is given in [10]. Here we wa
vestigate the equation in the context of periodic boundary conditions, with a corresponding Fourier–Galerkin
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In practice, a collocation method will be preferred, and this issue will be taken up in a later paper. We conside
spatial discretization, so that the resulting semi-discrete equation is a system of ordinary differential equation

The goal here is to improve a convergence result of Maday and Quarteroni [9], where polynomial converg
arbitrary order for smooth data is obtained. As will be shown, if the initial data are analytic in a strip about t
axis, then the convergence rate is actually exponential. That is, ifuN denotes the Galerkin approximation, there e
positive constantsΛT andσT , depending onT , such that

sup
t∈[0,T ]

∥∥u(·, t) − uN(·, t)∥∥
L2 � ΛT e−σT N .

It should be noted that even though the result in [9] yields spectral convergence, i.e. convergence faster
polynomial, it is not obvious that this can be used to give exponential convergence. The issue is essentially a
about whether an infinite sequence of Sobolev norms can be summed. In the context of the KdV equation, t
a trivial question, but a positive answer was given in recent work of Bona and Grujić [1]. The convergence proof i
the present article relies on their analytical result.

2. Auxiliary results

To quantify the domain of analyticity, we use the class of periodic Gevrey spaces, as introduced in [3]. De
‖ · ‖Gσ,s the Gevrey norm given by

‖f ‖2
Gσ,s

=
∑
k∈Z

e2σ(1+|k|)(1+ |k|2)s∣∣f̂ (k)
∣∣2,

where the Fourier coefficientŝf (k) of the functionf are defined byf̂ (k) = 1
2π

∫ 2π

0 e−ikxf (x)dx. A Paley–Wiener
type argument shows that functions in the spaceGσ,s are analytic in a strip of width 2σ about the real axis. Note th
by settingσ equal to zero, we recover the usual periodic Sobolev spaces. In particular, forσ = 0 ands = 0, the space
L2(0,2π) appears. In the sequel, we will also use the inner product on this space, given by(f, g) = ∫ 2π

0 f (x)g(x)dx.

The space of continuous functions from the interval[0, T ] into the spaceGσ,s is denoted byC([0, T ],Gσ,s). The
study of the KdV equation in spaces of analytic function was initiated by Kato and Masuda in [6]. The proble
subsequently studied by Hayashi [4], and more recently by Bona and Grujić in [1], where it was proved that the radi
σ of spatial analyticity decreases at most exponentially over time. All these studies have been in the conte
initial-value problem on the real line. Here, we state a corresponding result for the problem on the interval[0,2π]
with periodic boundary conditions.

Existence, uniqueness and continuous dependence on the initial data of solutions to the periodic initial-va
lem have been studied by Temam [11], Kenig, Ponce and Vega [7], and more recently by Kappeler and Top
Well posedness in periodic Gevrey classes can be established in much the same way as in [1], where this wa
the initial-value problem on the real line. In particular the width of the strip in which the solution is analytic is
by

σ(t) = σ0 e−ct‖u0‖Gσ0,s e−ct3/2
, (2)

for some constantc independent oft . The corresponding Gevrey norm may be estimated by∥∥u(·, t)∥∥
σ(t),s

� ‖u0‖Gσ0,s + c
√

t, (3)

for another constantc independent oft . The results are summarized in the following theorem.

Theorem 2.1. Suppose thatu ∈ C([0, T ],H s) is a periodic solution of(1) with initial data u0 ∈ Gσ0,s for some
σ0 > 0 and s > 5

2 . Thenu(·, t) extends uniquely to a function inGσ(t),s with σ(t) given by(2). Moreover, for any
τ ∈ (0, T ), u ∈ C([0, τ ],Gσ(τ),s), with a bound provided by(3).

For the initial-value problem on the real line, this theorem was proved in [1].
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As is well known, the KdV equation has an infinite number of conserved integrals. Consequently, for initi
u0 ∈ Gσ0,s , all positive integer Sobolev norms remain bounded for all time. What is more, forr < 5

2 ands > 5
2, we

have

sup
t∈[0,T ]

∥∥u(·, t)∥∥
Hr � sup

t∈[0,T ]

∥∥u(·, t)∥∥
Gσ(T ),s

≡ K.

3. Galerkin projection

The subspace ofL2 spanned by the set{eikx | k ∈ Z, −N � k � N} is denoted bySN . The operatorPN denotes
the orthogonal projection fromL2 ontoSN , defined by

PNf (x) =
∑

−N�k�N

eikx f̂ (k).

Forf ∈ Gσ andg ∈ Gσ,s , respectively, the inequalities

‖f − PNf ‖L2 � 2 e−σN‖f ‖Gσ , ‖g − PNg‖Hr � 2Nr−s e−σN‖g‖Gσ,s

hold for r < s. The proof is straightforward using the definition ofPN . Now since we have available an upper bou
of the Gevrey norm for a periodic solutionu of (1) with initial datau0 ∈ Gσ0,s these estimates provide for∥∥u(·, t) − PNu(·, t)∥∥

Hr � 2Nr−s e−σ(t)N
∥∥u(·, t)∥∥

Gσ(t),s
, (4)

with σ(t) given by (2). This is the key estimate to be used in the convergence proof.
A space-discretization of (1) is defined as follows. Find a functionuN from [0, T ] to SN which satisfies{(

∂tuN + 1
2 ∂x(u

2
N) + ∂3

xuN,φ
) = 0, t ∈ [0, T ],

uN(0) = PNu0,
(5)

for all φ ∈ SN . As it turns out, the discretized form of the equation also has some conserved integrals.

Lemma 3.1. SupposeuN is a solution of(5). Then the following two equations hold.

d

dt

2π∫
0

u2
N dx = 0,

d

dt

2π∫
0

(
∂xu

2
N − 1

3
u3

N

)
dx = 0.

Here the dependence ofuN onx andt has been suppressed for the sake of readability. From these relations,
proof may be found in [9], it follows immediately that the following Sobolev norms are bounded.

Corollary 3.2. SupposeuN is a solution of(5). Then there are constantsc0 andc1, such that

sup
t∈[0,T ]

∥∥uN(·, t)∥∥
L2 � c0, sup

t∈[0,T ]

∥∥uN(·, t)∥∥
H1 � c1.

For a proof of this corollary, the reader is referred to [9], where the next lemma is also proved.

Lemma 3.3. SupposeuN is a solution of(5). Then there is a constantc2, such that

sup
t∈[0,T ]

∥∥uN(·, t)∥∥
H2 � c2.

With these estimates in hand, we can mount an attack on proving the exponential convergence of the
scheme.

Theorem 3.4. Supposeu0 ∈ Gσ0,s for σ0 > 0 ands > 5
2 . GivenT > 0 andN ∈ Z+, there is a unique solutionuN to

the finite-dimensional problem(5). Moreover, there are positive constantsΛT andσT , such that

sup
t∈[0,T ]

∥∥u(·, t) − uN(·, t)∥∥
L2 � ΛT N1−s e−σT N .
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The existence of the solutionuN on the interval[0, T ] is proved by a combination of a fixed-point argument a
the foregoing stability results. To prove the convergence estimate, consider the functionh = uN − PNu ∈ SN as the
test functionφ in formula (5). Subtracting from (1), the estimate

d

dt

∥∥h(·, t)∥∥
L2 � sup

t

∥∥u(·, t) + uN(·, t)∥∥
H2

∥∥h(·, t)∥∥
L2 + 10 sup

t

∥∥u(·, t)∥∥2
Gσ(T ),s

N1−s e−σ(T )N

appears. Lettingλ = supt ‖u(·, t)‖H2 + c2 and using Gronwall’s inequality, we gain the inequality∥∥h(·, t)∥∥
L2 �

∥∥h(·,0)
∥∥

L2 eλT + 10K2N1−s e−σ(T )NT eλT .

Noting that‖h(·,0)‖L2 = 0, and using the triangle inequality, we get the final estimate∥∥u(·, t) − uN(·, t)∥∥
L2 � ΛT N1−s e−σT N ,

whereΛT = 2K + 10K2T eλT andσT = σ(T ) according to (2). Taking the supremum overt concludes the proo
A similar result holds for the Fourier-collocation projection of the KdV equation. In that case, the proof is som
more complicated, and will be given in a subsequent article.
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