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Abstract

We exhibit a class of statistically self-similar processes naturally associated with the so-called fixed points of the sm
transformation. This class includes stable subordinators and Mandelbrot multiplicative cascades. Both these processes
examples of Lévy processes in multifractal time, which are studied in other works. We describe their multifractal natureTo cite
this article: J. Barral, S. Seuret, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une classe de processus multifractals semi-stables contenant subordinateurs de Lévy et cascades multiplicatives de
Mandelbrot. Nous présentons une classe de processus auto-similaires en loi naturellement associés aux généralisatio
semi-stables considérées. Cette classe contient en particulier les subordinateurs stables de Lévy ainsi que les cascad
catives de Mandelbrot ; ses éléments sont des cas particuliers des processus de Lévy en temps multifractal étudiés ail
étudions leur nature multifractale.Pour citer cet article : J. Barral, S. Seuret, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

The best-known fractal or multifractal stochastic processes are certainly Fractional Brownian Motions
processes, and Mandelbrot multiplicative cascades. It is natural to perform a multifractal change of time in su
chastic process(Xt )t�0. More precisely, given an atomless multifractal positive Radon measureµ on R+ supported
by an interval of the form[0, T ] (T ∈ (0,∞)), then the processX ◦ µ([0, t]) is considered. The simplest situation li
in taking X equal to a monofractal process, like a FBM (see [14] for instance). In this case, the multifractal
of X ◦ µ follows almost straightforward from the one ofµ. In the situation whereX also has multifractal sampl
paths, the multifractal time change creates more interesting structures, both from the modeling and math
viewpoints (see for instance [16] for preliminary results on this topic, especially concerning large deviation s
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To our knowledge, the study of the sample paths multifractal properties has not been achieved in a non-tri
yet.

In this Note, we focus on the case whereX is a Lévy process andµ is a Mandelbrot measure on[0,1]. This choice
illustrates the more general result obtained in [5]. Furthermore, it yields a link between the statistical self-si
properties of stable Lévy processes and Mandelbrot measures.

2. Processes associated with generalized semi-stable laws

Let b be an integer� 2 andW = (W0, . . . ,Wb−1) a positive random vector. Then consider in the space of Lap
transforms of probability distributionsφ on R+ the equation

φ(u) = E

(
b−1∏
i=0

φ(uWi)

)
, ∀u � 0. (1)

This equation, solved in [7,8], comes from the modeling of fully developed turbulence [13] and of interacting p
systems. With (1) is naturally associated the structure function

ϕW :q ∈ R �→ − logb E

(
b−1∑
i=0

W
q
i

)
∈ R ∪ {−∞}. (2)

Under the assumption thatϕW(p) > −∞ for somep > 1, it is proved in [7] that (1) has non-trivial solutions if a
only if there existsβ ∈ (0,1] such thatϕW(β) = 0 andϕ′

W(β) � 0. As a consequence of the concavity of the mapp
ϕW , such aβ is unique andβ = inf{β ′ ∈ [0,1]: ϕW(β ′) = 0}.

Two special solutions of Eq. (1) are:

– whenβ = 1 andϕW(1−) > 0, the probability distribution of‖µW‖, whereµW is an independent multiplicativ
cascade on[0,1] generated byW (see [13,10]),

– whenβ ∈ (0,1), the stable laws with Laplace exponent−tβ , and in this caseWi is constant and equal tob−1/β

(see [11]).

Whenβ ∈ (0,1), ϕW(β) = 0 andϕW(β−) > 0, a non-trivial solution of (1) isZβ‖µWβ ‖1/β [8], whereZβ is a

positive stable law of indexβ andµWβ a Mandelbrot measure associated withWβ = (W
β

0 , . . . ,W
β

b−1) and independen

of Xβ . Equivalently, if(Z(β)
t )t�0 is a stable Lévy subordinator of indexβ, which is independent ofµWβ , then the law

of Z
(β)
‖µWβ

‖ solves (1) (see [7]).

The statistical self-similarity property expected to be satisfied by a process naturally associated with (1) wil
after the recall of the construction ofµW . LetA be the alphabet{0, . . . , b − 1} andA∗ = ⋃

n�0An (A0 contains the
empty word∅). Consider a sequence((W0(w), . . . ,Wb−1(w)))w∈A∗ of independent copies ofW . For n � 1, let
µW,n be the measure defined on[0,1] by uniformly distributing on every interval of the form[∑n

k=1 wkb
−k, b−n +∑n

k=1 wkb
−k] (wherew1w2 · · ·wn ∈An) the massWw1(∅) ·Ww2(w1) · · ·Wwn(w1w2 · · ·wn−1). Then, with probability

one,(µW,n)n�1 converges weakly on[0,1], asn → ∞, to a measureµW called the independent multiplicative casca
measure associated withW . The self-similarity property of the processZW,t = µ([0, t]) is then:

∀n � 1, (ZW,(k+1)b−n − ZW,kb−n)0�k<b−n
d≡

(
Z1(w)

n∏
k=1

Wwk
(w1 · · ·wk−1)

)
w∈An

, (3)

where, on the right-hand side, the setAn is described in lexicographical order, the random vectors(W0(w), . . . ,

Wb−1(w))’s are i.i.d. with W , and the random valuesZ1(w)’s are i.i.d. with ZW,1 and are independent of th
(W0(w), . . . ,Wb−1(w))’s. Property (3) expresses thenth iteration of (1).

Another fundamental process obeying (3) is the restriction to[0,1] of any stable Lévy subordinatorZ(β) of index
β ∈ (0,1] (by conventionZ(1)

t = t). In this case, the components ofW satisfyWi ≡ b−1/β .
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Fig. 1. Upper figures: Caseβ = 1:Zt = µW ([0, t]), andτ(q) = ϕW (q) whenϕ∗
W

(ϕ′
W

(q)) � 0. Lower figures: General caseβ ∈ (0,1). τ(q) = ϕ(q)

whenq � β andϕ∗
W

(ϕ′
W

(q)) � 0, and otherwiseτ(q) = 0 on[β,∞).

Finally, if there existsβ ∈ (0,1] such thatϕW(β) = 0 andϕW(β−) > 0, the general form of a statistically se
similar process in the sense of (3) is naturally obtained by considering the process

Zt = Z
(β)

µWβ
([0,t]) (t ∈ [0,1]), (4)

whereµWβ is an independent multiplicative cascade measure associated withWβ , independently ofZ(β).

3. Multifractal analysis of the stable Lévy subordinator in multifractal time

If Z : [0,1] �→ R+ is a non-decreasing function, we define its pointwise Hölder exponent at pointt as the quantity
hZ(t) = lim inf r→0, r =0

log|Z(t+r)−Z(t)|
log(r)

. Then, the level sets ofhZ(·) are denotedEZ(h), h � 0. If ϕ :R → R∪{−∞},
its Legendre transform isϕ∗ :h �→ infq∈R hq − ϕ(q). The Hausdorff dimension of a setE is denoted dimE.

The general result obtained in [5] (for a general Lévy process in multifractal time) yields the following
unifying those obtained in [9] and [1] respectively for the multifractal natures of stable subordinators and Man
cascades. In order to avoid technicalities, let us assume thatϕW > −∞ on R.

Theorem 3.1. Suppose that there existsβ ∈ (0,1] such thatϕW(β) = 0 andϕ′
W(β) > 0. Let(Zt )t∈[0,1] be the process

defined in(4). Letτ = 1{(−∞,β]}ϕW if β < 1 andτ = ϕW if β = 1. With probability one,dimEZ(h) = τ ∗(h) for all h

such thatτ ∗(h) � 0, andEZ(h) = ∅ for all h such thatτ ∗(h) < 0.

3.1. Comments on Theorem 3.1

The proof whenβ < 1 (the caseβ = 1 follows from[1]). One uses tools from [9,2–4].
The characterization of the level sets ofhZ(·) uses results for the increments ofZ(β) in [9] and adapts the approac

used in [2].
Let S be the Poisson point process such thatZ(β)′ = ∑

(s,λ)∈S λ δs . Let Fβ : t �→ µWβ ([0, t]). Also denote by

{(xn, λn)} the family{(F−1
β (s),2.|F−1

β ([s − λβ, s + λβ ])|)}(s,λ)∈S .
The linear part in the spectrumdZ : h �→ dim EZ(h) reflects conditioned ubiquity properties associated w

the jump pointsxn of Z, relatively to the familyλn and the measureµWβ (see [3] for the notion of heteroge
neous ubiquity). Roughly speaking, for everyh ∈ (0, τ ′(β)), up to a ‘small’ set, the setEZ(h) consists of those

points t for which there exists an increasing sequencenj such thatt ∈ [xnj
− λ

τ ′(β)/h
nj

, xnj
+ λ

τ ′(β)/h
nj

] for all j and

limj→∞
logµWβ

([xnj
−λnj

,xnj
+λnj

])
logλnj

= βτ ′(β). The Hausdorff dimension of such sets is estimated thanks to the

result of [3].
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The strictly concave part ofdZ reflects the multifractal structure ofµWβ . Indeed, ifh � τ ′(β) one proves tha
EZ(h) is equal toEFβ (βh) again up to a ‘small’ set.

3.2. The validity of the multifractal formalism

The derivativeν of Z obeys the standard multifractal formalisms for measures associated with the lev
Eν(h) = {t : lim inf r→0+ logµ([t−r,t+r])

log(r)
= h}. In particular, the scaling functions associated withν (see [6,15,2]) al

equalτ on the interval whereτ ∗(τ ′) > 0.

3.3. Extension of Theorem 3.1

The multifractal analysis of a Lévy processesX with drift and Brownian component is performed in [9] und
some minor restriction on the Lévy measure. Under the same assumptions as in [9], [5] provides general c
on a positive continuous measureµ on [0,1] under which the multifractal analysis of the processX in multifractal
timeµ can be performed. The result applies to large classes of statistically self-similar measures.

Eq. (1) can also be expressed in terms of characteristic function instead of Laplace transform; it has been
studied in [12]. IfϕW(β) = 0 andϕ′

W(β) > 0 for someβ ∈ (1,2), then the stochastic process naturally associ
with (1) is a symmetricβ-stable process in multifractal timeµWβ .
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