
1/

lating the
lizations
s and the

ple et

plus, nous
ment une

rojective
thors also
. We note
take

cit. can
complex

ght that

ults
C. R. Acad. Sci. Paris, Ser. I 341 (2005) 623–626
http://france.elsevier.com/direct/CRASS

Algebraic Geometry

Twisted Chern classes andGm-gerbes

Jochen Heinloth

Fachbereich Mathematik der Universität Duisburg-Essen, 45117 Essen, Germany

Received 19 May 2005; accepted after revision 26 September 2005

Presented by Jean-Marc Fontaine

Abstract

Using the language of stacks one can give a simple definition of functorial Chern classes for twisted sheaves. Calcu
cohomology ring of aGm-gerbe we observe that the twisted Chern classes used by Huybrechts and Stellari are specia
of these classes. We describe explicitly the relation between the choice of a cocycle in the definition of twisted sheave
2-categorical structure ofGm-gerbes.To cite this article: J. Heinloth, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Classes de Chern tordues et gerbes liées par Gm. La théorie des champs nous permet de donner une définition sim
fonctorielle des classes de Chern des faisceaux tordus. Le calcul de l’anneau de cohomologie d’une gerbe liée parGm démontre
que les classes de Chern tordues, introduites par Huybrechts et Stellari, sont des spécialisations de ces classes. De
expliquons la relation entre le choix d’un cocycle utilisé dans la définition des faisceaux tordus et le fait que les gerbes for
2-catégorie.Pour citer cet article : J. Heinloth, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Recently, Huybrechts and Stellari defined cohomological Chern classes for twisted sheaves on smooth p
varieties and used these in the study of derived equivalences on K3 surfaces [5,6]. In these articles the au
point out that the new Chern classes for twisted sheaves do not behave as functorially as one would expect
that these problems disappear if one uses the language ofGm-gerbes. In particular, in this setup, Chern classes
values in the cohomology of a gerbe over a spaceX, which is a polynomial ring overH ∗(X,Q) if the class of the
gerbe is torsion. Furthermore, the choice of a cocycle appearing in the definition of twisted sheaves in loc.
be explained by the fact that gerbes form a 2-category, whose structure is given by a truncated cohomology
instead of a cohomology group.

These results are probably well known to specialists, but since I could not find them in the literature I thou
it might be useful to give a short explanation of these facts.

In the followingX is either a variety overC or a differentiable manifold. In the differentiable setting the res
also hold if one replaces the multiplicative groupGm by S1.
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1631-073X/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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2. Cohomological Chern classes for vector bundles on stacks

Let E be a vector bundle of rankr onX. It defines a mapfE :X → BGLr = [pt/GLr ] to the classifying stack (o
space) of GLr -bundles. SinceH ∗(BGLr ,Z) = Z[c1, . . . , cr ] (cf. [2]) one can define cohomological Chern classe
E asci(E) = f ∗

Eci . By descent for vector bundles the same holds for any algebraic stack (in the sense of Artin
differentiable stackM, i.e. any vector bundleE onM defines a mapM → BGLr . To describe this map explicitly i
terms of groupoids, one can choose an atlasπ :X → M such thatπ∗E is trivial. After trivializing, the descent datum
for E is a mapX ×M X → GLr and thus defines a map of groupoids( X ×M X X ) → ( GLr pt ) which defines
a mapM → BGLr .

We can again define cohomological Chern classesci(E) := f ∗
E(ci) ∈ H ∗(M,Z).

3. Cohomology of Gm-gerbes

Given a classτ ∈ H 2(X,Gm) = H 2(X,O∗
X) we choose aGm-gerbeXτ → X over X in this class (the relatio

between this choice and the choice of a cocycle forτ is explained in the last section). Letd(τ) ∈ H 3(X,Z) be the
Dixmier–Douady class ofτ , given by the boundary of the exponential sequence.

Lemma 3.1. Let π :Xτ → X be a Gm-gerbe over a variety andE a vector bundle of weight1 on Xτ . Then
H ∗(Xτ ,Q) ∼= H ∗(X,Q)[z], wherez ∈ H 2(Xτ ,Q) is the first Chern class ofE.

The same holds in the differentiable setting ifτ ∈ H 2(X,S1)tors is a torsion element.

Recall that a vector bundleE on Xτ is of weight 1, if theGm-automorphisms of all points act by scalar multip
cation on the fibres ofE, equivalentlyE is aτ -twisted vector bundle onX.

Proof. The Leray spectral sequence forπ : E
p,q

2 = Hp(X,Rqπ∗Q) ⇒ Hp+q(Xτ ,Q), degenerates, sinceτ�cRπ∗Q

is the same as the cohomology of a projective bundle: We defineE′ := E⊕(c+1), which is a vector bundle of weight
onXτ , rk(E′) > c andc1(E

′) = (c+1)c1(E). Denote bys0 :Xτ → E′ the zero section ofE′. Thenp :E′ −s0(X
τ ) →

Xτ is 2 rk(E′)−2-acyclic (i.e.,Rip∗Q = 0 for 0< i < 2 rk(E′)−1), thereforeH ∗(E′ − s0(X
τ ),Q) ∼= H ∗(Xτ ,Q) for

∗ < 2 rk(E′)−1. SinceE′ is of weight 1,p :E′ − s0(X
τ ) → X is a bundle of projective spaces and moreover the c

p∗(c1(E
′)) gives a generator for the rational cohomology of the fibres ofp. ThusRip∗Q are constant sheaves and

spectral sequence for the cohomology of the projective bundle degenerates by the theorem of Leray–Hirsch�
Remark 1. The classz generating the cohomology of the gerbe as algebra overH ∗(X,Q) depends on the choice
the vector bundleE of weight 1 onXτ . For example, if we tensorE with the pull back of a line bundleL on X we
changez by addingπ∗(c1(L)).

3.1. Remark on integral coefficients

The lemma does not hold for integral coefficients. It also fails in the differentiable setting, if the Dixmier–D
classd(τ) of the gerbe is not torsion: The Leray spectral sequence still looks like:

H 0(X,R2π∗Z)

d3

. . .

0 0 0 0 . . .

H 0(X,Z) H 1(X,Z) H 2(X,Z) H 3(X,Z) . . .

whered3 is the first differential that can be non-trivial. Since the gerbe is neutral over itself we haveπ∗(d(τ )) = 0,
therefored(τ) must lie in the image ofd3. ThusH 0(X,R2π∗Z) �= 0 so that the locally constant sheafR2π∗Z must be
constant.

Since the spectral sequence is multiplicative, this shows that for twists such thatd(τ) is not a torsion class, th
cohomology ofXτ only contains a quotient ofH ∗(X,Z).

More precisely, the differentiald3 maps a generator ofH 0(X,R2π∗Z) ∼= Z to d(τ). This can be seen by looking
the exponential sequence:
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Xτ 0

0 Rπ∗Z Rπ∗OXτ Rπ∗O∗
Xτ 0.

The sheafR1π∗O∗
Xτ is the sheafification ofU 	→ Pic(U ×X Xτ ). But for acyclic open setsU we haveU ×X Xτ ∼=

U × BGm, so that Pic(U ×X Xτ ) ∼= Z ∼= H 2(U × Gm,Z) and the canonical generator is given by (the Chern c
of) the universal line bundle. ThusR1π∗Gm

∼= R2π∗Z ∼= Z. Furthermore, the differentiald2 :H 0(X,R1π∗O∗
X) →

H 2(X,Gm) maps the generator toτ : Choose an acyclic coveringUi of X and universal bundlesLi on Ui ×X Xτ .
Then the differential in the spectral sequence is given by the obstruction to glueing of these bundles, which e
classτ . Applying the morphism of spectral sequences induced by the exponential establishes the claim.

4. Comparison with the twisted Chern character of Huybrechts and Stellari

In [5], Huybrechts and Stellari define a twisted Chern character for a twistτ ∈ H 2(X,Gm) depending on the
choice of a classB ∈ H 2(X,Q) with exp(B0,2) = τ . Twisted bundles onX are the same as bundles of weight 1
the corresponding gerbe and their construction gives a specialization of the Chern classes defined above as

First note that the exponential sequence:H 2(X,OX)
exp−→ H 2(X,O∗

X)
d−→ H 3(X,Z) shows that ifτ = exp(B0,2)

then the Dixmier–Douady classd(τ) = 0. In particular, the twistτ is trivial in the differentiable category (the she
of differentiable functions is acyclic).

Thus there exists a differentiable line bundleL of weight 1 onXτ (equivalently a twisted line bundleL on X).
Then for any vector bundleE of weight 1 onXτ the tensor productE ⊗ L−1 is of weight 0. ThereforeE ⊗ L−1

descends to a bundle onX where one can apply the usual Chern character. Call the resulting class chL(E).
Alternatively, the choice ofL defines a classz = c1(L) ∈ H 2(Xτ ,Q) and chL(E) is obtained by settingz = 0 in

the Chern character ofE on Xτ considered as a powerseries inz (ch(E) = ch(E ⊗ L−1)exp(z) and the first factor
lies inH ∗(X,Q) ⊂ H ∗(Xτ ,Q)).

Huybrechts and Stellari point out that a canonical choice for the Chern class ofL is already determined byB:
Indeed, denote byS1

diff (resp.Rdiff ) the sheaf of differentiable sections with values inS1 (resp. inR). To defineXτ by
τ we have to choose a 3-cocycleτijk ∈ Z3(X,O∗

X) and sinceτ = exp(B0,2) we can even chooseτijk ∈ Z3(X,S1
diff ).

This can be done through a choice of a cocycle forB in Z3(X,R). We have:

Z3(X,R) H 2(X,R)

Z2(X,Rdiff )
exp

C2(X,Rdiff )
d

exp
Z3(X,Rdiff )

exp
0

Z2(X,S1
diff ) C2(X,S1

diff )
d

Z3(X,S1
diff ) H 2(X,S1

diff ).

SinceRdiff is acyclic, the cocycle forB is in fact a boundary inZ3(X,Rdiff ). The choice of a lifting ofB to an
elementa ∈ C2(X,Rdiff ) defines (by exp) a bundleL of weight 1 onXτ . Two such lifting differ by an element o
Z2(X,Rdiff ) = d(C1(X,Rdiff )). Thus the Chern class of the bundleL does not depend on the choice ofa andBijk .
Huybrechts and Stellari define the Chern class by chB(E) := chL(E).

Remark 2. The Chern character defined on the gerbeXτ has the advantage that it is compatible with morphis
of gerbes and does not depend on additional choices. Our approach compares to the one of Huybrechts a
as follows:τ ∈ H 2(X,Gm) corresponds to an isomorphism class of gerbes. The choice of the cocycle incorp
the choice of a gerbe in this isomorphism class (see Section 5). Note that in the applications the gerbe i
canonical, typically defined by some moduli problem. Finally to get Chern classes with values inH ∗(X,Q), the
choice of aB-field corresponds to the choice of a vector bundle of weight 1.

5. Choosing cocycles and the 2-category of gerbes

It is well-known that the set of isomorphism classes ofGm-gerbes onX is naturally isomorphic toH 2(X,Gm)

(e.g., [3,1]). Stacks form a 2-category, and there is no canonical choice of such an isomorphism class. Thus,
twisted sheaves onX one usually chooses a cocycle for a given cohomology classτ ∈ H 2(X,Gm). This choice also
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quoted above (the arguments work for any Abelian group instead ofGm):

Let 0→ A0 → A1 → A2 → 0 be a complex of Abelian groups representing the complexτ�2RΓ (X,Gm).
In the same way as a two term complexA0 → A1 defines a groupoid (just becauseA0 acts onA1) one can define

a 2-category from the above 3-term complex: The objects are elements inA2; an object in Hom(x, y) is an elemen
φ ∈ A1 with x + d(φ) = y and a morphismΦ :φ → ψ is an elementΦ ∈ A0 with φ + d(Φ) = ψ .

Proposition 5.1. The 2-category ofGm-gerbes is equivalent to the two category defined by any3-term complex
representingτ�2RΓ (X,Gm).

For 2-categories and equivalences between them see [4], Section 1. The proof below is the standard
keeping track of the morphisms.

Proof. First, we use a particular complexA• as above and construct:

– For any elementa2 in A2 a gerbeXa2 → X.
– For anya2 ∈ A2 and any elementa1 ∈ A1 a morphismXa2 → Xa2+d(a1) such that this defines an equivalence

categories:〈A0 → ker(A1 → A2)〉 → IsomGm-gerbes/X(Xa2,Xa2+d(a1)).

To construct a resolution of the sheafGm we choose a contractible coveringUi of X such that all intersection
Ui1,...,ir = Ui1 ∩ . . . ∩ Uir are also acyclic. We calculate the cohomology ofX by the Cech complex:⊕Γ (Ui,Gm) →
⊕Γ (Uij ,Gm) → ⊕Γ (Uijk,Gm) → ⊕Γ (Uijkl,Gm).

Let aijk be a cocycle. Define a groupoid:
∐

Gm × Uij

∐
Ui, where the source and target morphis

are given by the projection toUi and Uj and the compositionm : (Gm × Uij ) ×Uj
(Gm × Ujk) → Gm × Uik is

defined as:m(sij , x, sjk, x) := (sij · sjk · aijk, x). This composition is associative: we drop the pointx ∈ X from
the notation and take four indicesi, j, k, l and sectionssij , sjk, skl . Thenm(m(sij , sjk), skl) = sij sjksklaijkaikl and
m(sij ,m(sjk, skl)) = sij sjksklajklaij l . Sinceaijk is a cocycle, we know thataijka

−1
ij l aikla

−1
jkl = 0 and the two compo

sitions coincide.
The gerbeXaijk overX is the stack defined by this groupoid:

∐
Gm × Uij

∐
Ui Xaijk

Uij
∐

Ui X.

Furthermore, givenbij ∈ ∐
Γ (Uij ,Gm) we can define a map of groupoids by:(sij , x) 	→ (bij sij , x). This is compat-

ible with m since:

(sij bij )(sjkbjk)(aijkb
−1
ij bikb

−1
jk ) = (sij sjkaijk)bik.

Finally, an elementci ∈ ∐
Γ (Ui,Gm) defines a 2-morphism:Uij → Gm × Uij by x 	→ cic

−1
j .

It is easy to check that these maps define the claimed equivalences, since anyGm-gerbe restricted to the contractib
spaceUi is trivial and automorphisms of the trivial gerbe are given by line bundles on the base. Thus the ch
trivializations of the restrictions of the gerbe toUi and a choice of trivialisations of the line bundles obtained from
two trivialisations onUij defines a cocycleaijk . Similarly one checks the claim on morphisms.

It is immediate from the definitions that quasi-isomorphic complexesA• → B• define equivalent 2-categories.�
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