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Abstract

Using the language of stacks one can give a simple definition of functorial Chern classes for twisted sheaves. Calculating the
cohomology ring of &G,,-gerbe we observe that the twisted Chern classes used by Huybrechts and Stellari are specializations
of these classes. We describe explicitly the relation between the choice of a cocycle in the definition of twisted sheaves and the
2-categorical structure d@,,-gerbesTo citethisarticle: J. Heinloth, C. R. Acad. Sci. Paris, Ser. | 341 (2005).
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Résumé

Classes de Chern tordues et gerbes liées par G,,. La théorie des champs nous permet de donner une définition simple et
fonctorielle des classes de Chern des faisceaux tordus. Le calcul de I'anneau de cohomologie d’'une gerbi@, i@ pamtre
gue les classes de Chern tordues, introduites par Huybrechts et Stellari, sont des spécialisations de ces classes. De plus, nc
expliquons la relation entre le choix d’un cocycle utilisé dans la définition des faisceaux tordus et le fait que les gerbes forment une
2-catégoriePour citer cet article: J. Heinloth, C. R. Acad. Sci. Paris, Ser. | 341 (2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Recently, Huybrechts and Stellari defined cohomological Chern classes for twisted sheaves on smooth projective
varieties and used these in the study of derived equivalences on K3 surfaces [5,6]. In these articles the authors als
point out that the new Chern classes for twisted sheaves do not behave as functorially as one would expect. We not
that these problems disappear if one uses the langua@g @ferbes. In particular, in this setup, Chern classes take
values in the cohomology of a gerbe over a spZcevhich is a polynomial ring oveH* (X, Q) if the class of the
gerbe is torsion. Furthermore, the choice of a cocycle appearing in the definition of twisted sheaves in loc. cit. can
be explained by the fact that gerbes form a 2-category, whose structure is given by a truncated cohomology comple;
instead of a cohomology group.

These results are probably well known to specialists, but since | could not find them in the literature | thought that
it might be useful to give a short explanation of these facts.

In the following X is either a variety ove€ or a differentiable manifold. In the differentiable setting the results
also hold if one replaces the multiplicative graGp, by S1.
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2. Cohomological Chern classes for vector bundles on stacks

Let E be a vector bundle of rankon X. It defines a magr : X — BGL, = [pr/GL,] to the classifying stack (or
space) of GL-bundles. Sincél*(BGL,, Z) = Z|cy, ..., ¢;] (cf. [2]) one can define cohomological Chern classes of
E asc;(E) = fpc;. By descent for vector bundles the same holds for any algebraic stack (in the sense of Artin) or any
differentiable stackM, i.e. any vector bundI& on M defines a map\t — BGL,.. To describe this map explicitly in
terms of groupoids, one can choose an atlay — M such thatr*E is trivial. After trivializing, the descent datum
for E isamapX x ¢ X — GL, and thus defines a map of groupo(d$ x » X = X ) — (GL, = pt ) which defines
a mapM — BGL,.

We can again define cohomological Chern clags€B) := fr(c;) € H*(M, Z).

3. Cohomology of G,,-gerbes

Given a class € H2(X,G,,) = H%(X, O%) we choose &,,-gerbeX™ — X over X in this class (the relation
between this choice and the choice of a cocyclerfds explained in the last section). Létr) € H3(X, Z) be the
Dixmier—-Douady class of, given by the boundary of the exponential sequence.

Lemma 3.1. Let 7: X" — X be aG,,-gerbe over a variety andZ a vector bundle of weight on X*. Then
H*(XT,Q) = H*(X,Q)[z], wherez € H%(X", Q) is the first Chern class df .
The same holds in the differentiable setting & H2(X, S1)iors is a torsion element.

Recall that a vector bundlE on X7 is of weight 1, if theG,,,-automorphisms of all points act by scalar multipli-
cation on the fibres of/, equivalentlyE is at-twisted vector bundle o .

Proof. The Leray spectral sequence for Eé”q = HP(X,Ri7,Q) = HPt4(X7,Q), degenerates, sinae~‘Rzx,Q

is the same as the cohomology of a projective bundle: We défine E€(+D which is a vector bundle of weight 1
onX®,rk(E") > candc1(E") = (c+1)c1(E). Denote bysg: X* — E’ the zero section of’. Thenp : E/ —so(X*) —

X7 is 2rk(E") — 2-acyclic (i.e. R p,Q =0for0< i < 2rk(E") — 1), thereforeH* (E’ —so(X7), Q) = H*(X7, Q) for

x < 2rk(E’) — 1. SinceE’ is of weight 1,p: E’ —s0(X™) — X is a bundle of projective spaces and moreover the class
p*(c1(E")) gives a generator for the rational cohomology of the fibreg.dfhusR!p,Q are constant sheaves and the
spectral sequence for the cohomology of the projective bundle degenerates by the theorem of Leray—Hirsch.

Remark 1. The class generating the cohomology of the gerbe as algebra BVéX, Q) depends on the choice of
the vector bundlgE of weight 1 onX®. For example, if we tensaf with the pull back of a line bundI& on X we
changez by addingr*(c1(L)).

3.1. Remark on integral coefficients

The lemma does not hold for integral coefficients. It also fails in the differentiable setting, if the Dixmier—Douady
classd(t) of the gerbe is not torsion: The Leray spectral sequence still looks like:

HO(X, R%x,7)

d3

0 0 0 0

HO(X,7) HY(X,7Z) H2(X,7) H3(X,7)

whereds is the first differential that can be non-trivial. Since the gerbe is neutral over itself wentigwér)) = 0,
therefored (t) must lie in the image ofs. ThusH°(X, R?x,Z) # 0 so that the locally constant shé&fr,Z must be
constant.

Since the spectral sequence is multiplicative, this shows that for twists sucti(thais not a torsion class, the
cohomology ofX™ only contains a quotient aff *(X, Z).

More precisely, the differential; maps a generator ¢f°(X, R%x,Z) = Z to d(t). This can be seen by looking at
the exponential sequence:
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~

0——Z=nZ—0Ox =m,Oxr HO; =7T*03k(r —0

b b v
0 R Z R, Ox« R]T*O;}I

0.

The sheaRln*(’);T is the sheafification o/ — Pic(U x x X7). But for acyclic open set&f we haveU xy X™ =

U x BG,,, so that PicU xx X7) £ Z = H%(U x G,,, Z) and the canonical generator is given by (the Chern class

of) the universal line bundle. ThiR!z,G,, = R?r,Z = Z. Furthermore, the differential, : H0(X, Rz, 0%) —
H2(X,G,,) maps the generator to Choose an acyclic covering; of X and universal bundles; on U; xx X°.

Then the differential in the spectral sequence is given by the obstruction to glueing of these bundles, which equals the
classt. Applying the morphism of spectral sequences induced by the exponential establishes the claim.

4. Comparison with thetwisted Chern character of Huybrechtsand Stellari

In [5], Huybrechts and Stellari define a twisted Chern character for a twist?(X, G,,) depending on the
choice of a clas® € H2(X, Q) with exp(B%?) = r. Twisted bundles oX are the same as bundles of weight 1 on
the corresponding gerbe and their construction gives a specialization of the Chern classes defined above as follows.

First note that the exponential sequend@(X, Ox) —5 H2(X, 0%) 4, H3(X.,7) shows that ifr = exp(B%2?)
then the Dixmier—-Douady claggt) = 0. In particular, the twist is trivial in the differentiable category (the sheaf
of differentiable functions is acyclic).

Thus there exists a differentiable line bundleof weight 1 onX™ (equivalently a twisted line bundle on X).
Then for any vector bundl& of weight 1 onX? the tensor producE ® L~ is of weight 0. ThereforeZ ® L1
descends to a bundle ghwhere one can apply the usual Chern character. Call the resulting clags)ch

Alternatively, the choice of. defines a class = c1(L) € H3(X", Q) and ch (E) is obtained by setting =0 in
the Chern character df on X* considered as a powerseriesziich(E) = ch(E ® L~1) exp(z) and the first factor
liesin H*(X,Q) c H*(X", Q)).

Huybrechts and Stellari point out that a canonical choice for the Chern classsoélready determined bg:
Indeed, denote by&iﬁ (resp.Rgifr) the sheaf of differentiable sections with valuessin(resp. inR). To defineX by
T we have to choose a 3-cocyalgy € Z3(X, O%) and sincer = exp(B%2) we can even choosgj, € Z3(X, Siq)-
This can be done through a choice of a cocycleAan Z3(X, R). We have:

Z3(X,R)— H%(X,R)

Z2(X, Ritt) — C2(X, Ritt) —= Z3(X, Rait) ———=0
yexp yexp ; Jexp V
72X, Ske) — C2(X, Sk) —4= 73(X, ko) —— HZ(X, SLo).

SinceRygi is acyclic, the cocycle foB is in fact a boundary iZ3(X, Rqirt). The choice of a lifting ofB to an
elementa € C%(X, Ryirt) defines (by exp) a bundle of weight 1 onX”. Two such lifting differ by an element of
Z2(X, Ryif) = d(CY(X, Ryiff)). Thus the Chern class of the bundledoes not depend on the choicesfnd B; .
Huybrechts and Stellari define the Chern class by(éh) := chy (E).

Remark 2. The Chern character defined on the geXfehas the advantage that it is compatible with morphisms

of gerbes and does not depend on additional choices. Our approach compares to the one of Huybrechts and Stellz
as follows:t € H(X, G,,) corresponds to an isomorphism class of gerbes. The choice of the cocycle incorporates
the choice of a gerbe in this isomorphism class (see Section 5). Note that in the applications the gerbe is usually
canonical, typically defined by some moduli problem. Finally to get Chern classes with vald&§ i Q), the

choice of aB-field corresponds to the choice of a vector bundle of weight 1.

5. Choosing cocycles and the 2-category of gerbes
It is well-known that the set of isomorphism classesGf-gerbes onX is naturally isomorphic tdH2(X, G,,)

(e.g., [3,1]). Stacks form a 2-category, and there is no canonical choice of such an isomorphism class. Thus, to defin
twisted sheaves oK one usually chooses a cocycle for a given cohomology alas#/?(X, G,,). This choice also
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determines a gerbe and the relation to the 2-categorical structure can be explained by recalling the proof of the resi
guoted above (the arguments work for any Abelian group insteé&),of
Let0— Ao — A1 — A — 0 be a complex of Abelian groups representing the compleR " (X, G,,,).
In the same way as a two term compléy — A defines a groupoid (just becaudg acts onA;) one can define
a 2-category from the above 3-term complex: The objects are elemeats an object in Hondx, y) is an element
¢ € A1 with x + d(¢) = y and a morphisn® : ¢ — v is an element € Ag with ¢ + d(®) = .

Proposition 5.1. The 2-category ofG,,-gerbes is equivalent to the two category defined by 24grm complex
representingg <oRI" (X, G,,).

For 2-categories and equivalences between them see [4], Section 1. The proof below is the standard proof [1
keeping track of the morphisms.

Proof. First, we use a particular comple, as above and construct:

— For any elemeniy in A2 a gerbex?2 — X.
— For anya; € A and any element; € A1 a morphismx“2 — X924 sych that this defines an equivalence of
categories{Ag — Ker(A1 — Az)) — 1SOMg,, -gerbeg x (X2, X2 +d(@)),

To construct a resolution of the she@f, we choose a contractible coveriig of X such that all intersections
,,,, i, =Uy N...NU, are also acyclic. We calculate the cohomologyaby the Cech complexd " (U;, G,,) —
SI'Uij, Gp) = &I (Uiji, Gn) — @I (Uijrr, G).

Let a;jx be a cocycle. Define a groupoid:[G,, x U;; —=][[U;, where the source and target morphisms
are given by the projection t0; and U; and the compositiom: : (G, x U;;) xy; (Gu x Ujk) = Gy x Uik is
defined asm(s;;, x, sk, x) 1= (sij - Sjk - aijk, x). This composition is associative: we drop the poing X from
the notation and take four indicésj, k, [ and sections;;, s, sx. Thenm(m(sij, Sjk), Sk1) = SijS jkSkiQijkaix and
m(sij, m(sjk, Sk1)) = $ijS xSk kaiji- Sincea; i is a cocycle, we know thaijjkai;}a[klaj_kji = 0 and the two compo-
sitions coincide.

The gerbeX it over X is the stack defined by this groupoid:

LHGn x Ujj —= | Ui —— x4k
v |

v Y
Uij ——=[ ] U; X.

Furthermore, givew;; € [ [ I"(U;;, G,,) we can define a map of groupoids lgy;;, x) — (b;;s;;, x). This is compat-
ible with m since:
(Sijbij)(Sjkbjk)(aijkbi;lbikbj_kl) = (8ijSjkaijx)bik-

Finally, an element; € | [ I"(U;, G,,) defines a 2-morphisntZ;; — G, x U;; by x — cicTt

Itis easy to check that these maps define the claimed equivalences, sii&g-geybe restricted to the contractible
spacel; is trivial and automorphisms of the trivial gerbe are given by line bundles on the base. Thus the choice of
trivializations of the restrictions of the gerbelih and a choice of trivialisations of the line bundles obtained from the
two trivialisations onU;; defines a cocycle;;;. Similarly one checks the claim on morphisms.

It is immediate from the definitions that quasi-isomorphic complekes> B, define equivalent 2-categories
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