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Abstract

We give some equivalence estimates on the solution of a singular perturbation problem that represents, among other models, tt
Koiter and Naghdi shell models. Two of the estimates apply to intermediate shell problems and the third is for membrane/shear
dominated shells. From these equivalences, many known and some new sharp estimates on the solutions of the singular perturbati
problems easily followTo citethisarticle: S. Zhang, C. R. Acad. Sci. Paris, Ser. | 342 (2006).
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Résumé

Estimations d’éguivalence pour une classe de problémes de perturbations singuliéres. Nous donnons des estimations
d’équivalence de la solution d’un probleme de perturbations singuliéres pour des modéles de coques qui englobent les modéles «
Koiter et de Naghdi. Deux de ces estimations sont valables pour les problémes de coques dits intermédiaires, la troisiéme s’appliqu
a des coques de type membrane/cisaillement. Quelques unes de ces équivalences sont connues, mais d'autres équivalences don
des résultats précis pour des solutions de probléemes de perturbations singetiérester cet article: S. Zhang, C. R. Acad. Sci.

Paris, Ser. | 342 (2006).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction
Let H, U, andV be Hilbert spacesA and B be linear continuous operators frathto U andV, respectively. We
consider the problem: Givefi e H*, the dual space aff, ande > 0, findu® € H, such that
€?(Auf, Av)y + (BuS, Bv)y = (f,v) VveH. 1)

We will use the notation®® ~ Q and P < Q, which mean that there exist constats C2, andC independent
of e, P,andQ such thatC1 P < Q < C2P andP < CQ, respectively. We assume

lAully + 1| Bully = |lullz  VYueH ()

such that (1) has a unique solutiah € H. Further, we assume that ker= {0} and the range of3, denoted by
W = B(H), is dense inV but not equal toV, so (1) is a singular perturbation problem. This problem represents
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the Koiter and Naghdi models of shells that inhibit pure bending deformations, for which the equivalence (2) can be
found in [7]. The function|B - ||y defines a weaker norm aH. If the functional f is continuous with respect to

this norm, the shell problem is membrane/shear dominated. Otherwise, it is intermediate. In this note, we establis
some equivalent estimates af for both of the two cases. The proofs of these equivalences are very simple, see
Section 2. From these estimates, a number of old and new sharp estimates on the beh&wasibdf follow. Among

other things, we show in Section 3 th&t converges to a limit in a norm at a rate in any case. (The norm is problem
dependent, and it could be very weak.) Such convergence occurs at a higher rate in the membrane/shear domina
case.

2. Equivalent estimates

We recall some terminologies in Hilbert spaces. For a Hilbert siaeee denote its dual by *, as we already did,
and for anyf € X*, we usey f € X to denote its Riesz representation. The isomorphignX — X* is defined as
the inverse ofx. If X andY are Hilbert spaces with C Y, and if X is dense ir¥’, then the restriction operator defines
an injection ofY* onto a dense subspaceXf (and we identifyY * with that dense subspace). For such pair of Hilbert
spaces, we havE NY = X andX + Y =Y as set, on which we define new norms|ayixny = (IzI1% + [1z[12)Y/?
and||zllx+y = ian:X+y(||x||§ + ||y||§)1/2, respectively. With these norms, the intersection Y and the sunX + Y
are themselves Hilbert spaces. The dual spaceandY* can be viewed as subspace(&fn Y)* and we have [3]
X* 4+ Y* = (X NnY)*. Associated with a Hilbert spacg and any positive numbes, we define the Hilbert space
€ X. As set,e X equals toX, but the norm is defined bljx|lc x = € || x| x. We have(e X)* =e 1 X* (e X NY)* =
e 1X*4+Y* and(e X + Y)* = e~ 1 X*NY*. The K -functional [3] on such Hilbert couplg’, X] is a norm onX + Y
defined byK (¢, y, [V, X]) =infy—y 1y, yiev, ypex{llyally +€ lly2llx}. Obviously,K (¢, y, [Y, X1) > |y lly+« x - Since
X is dense intY, we have lim_,o K (e, y,[Y, X]) =0 Vy € Y. Furthermore, ify € [Y, X15,, (the real interpolation
space based on thé-functional) for some X p < oo and 0< 6 < 1,thenK (e, y, [Y, X]) < 69||y||[y,x]9,p.

We define a norm oV by the function||B~! - ||z, then the operatoB is an isomorphism betweeH and W.
For any f € H*, there is a uniqué* € W* such that( f, v) = (€*, Bv) Yv € H. Let H be the completion oH with
respect to thé/B - ||y norm. ThenB can be extended t& to define an isomorphism, denoted By betweenH

andV. The function||zy B - ||w+ also defines a norm o which we call theH norm. It is weaker than thél

norm. We denote the completion &f with respect to this new norm bk . The operatorry B: H — W* can then
be uniquely extended t&, and the extension, denoted by B, is an isomorphism betweel and W*. Thus for
£* € W*, there is a unique® € H such thatry Bu® = £*. We will see that thisi® is the limit of u€ in H. If f € H*,

i.e., f is continuous with respect to theB - ||y norm, therg* € V* andu® € H satisfiesBu® = & =iy £*. We have
K(e, fi[H* H*]) = K (,u®, [H, H]) = K (€, §*, [W*, V*]) = [|§*lwtev+. And if f € H*, K(e,u®,[H, H]) =

K(e, &, [V, W]) >~ ||E]lv+e w- The following two theorems are the main results of this note.

Theorem 2.1. For the solution of the problem (1), we have the equivalences

el Aully + | Bully = & wrie ve 3)
and

7wy Bu —&*lws + € | Bully 2= |E | wte v+ 4)
Proof. Since

€?(Auf, Av)y + (Bu€, Bv)y = (§*, Bv) YveH, (5)
we have

€2(Aus, Au®)y + (Bu®, BuS)y = (%, Bu) S 1E% | -1 wepy= 1 BuC lle wav
2 NE -2 wegys (€ 1BuSllw + I1BuSllv) SNE Ne-2wepy= (€ AUy + | Buclly).
Thuse [|Au |y + || Bu€|ly < e L |E*||wete v+. ON the other hand,

_ (£*, Bv) €2(Au¢, Av)y + (Bu, Bv)y
e g | wrevs = SUp————— = sU SellAuc|ly + || Buflly.
ver IBvllewnv  yen IBvllewnv
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The equivalence (3) then follows. We write Eq. (5)(as Bu¢ — £*, Bv) = — €2(Au®, Av)y Yv € H. From this we
see

wy Bu¢ — &*, Bv Au€, Av
v Bu — &%y = sup VB ZEL B g 2 IS AL < 2y ey (6)
Vel 1Bullw et Bvllw

Therefore||my Bu¢ — &£*||w+ + € | Bu€|ly < €?[|Auf||y + €||Buf|y. One direction of (4) then follows from this
estimate and (3). The other direction of (4) follows from the definition of the sum norm.

Theorem 2.2.If f € H*,i.e, &* € V*, then for the solution u€ of (1), the equivalence
€llullg + |1 Bu€ —&lly + € lmy Bu® — &*|lw» > |I€lle wav (7)
holds. Here &£ =iy &* isthe Riesz representation of &*.

Proof. Wheng* € V*, we havee?(Au€, Au€)y + (Bu€, Bu®)y = (£, Bu®)y. Thus
?(Auf, Au®)y + (Bu® — &, Bu® — &)y = —(Bu® —£,&)y = —(wy Bu® — £, §).
The right-hand side dual product can be bounded as follows.

|(my Bu® —&*,€)| < llmy Bu® — £ || -1 ey € le wav
~e Ymy But — | wellEllewsy + | BuS —EvIElewsy
S (ellAully + 1Bu —Ellv)1Ellewv-

In the last step we used (6). Thug|Au€||ly + ||Bu® — &lly < |€llew+v. From this we see thatBu®|y <
NENY + lEllewsy < 1IEllv. Therefore,e [[u€|ly + | Bu¢ — £|ly < €]l wsv. On the other hand, from the defini-
tion of the sum norm, we see thigt||c wrv < € ||Bu€|lw + || Bu¢ — &|ly S€llufllg + ||Bu€ — &||y. From (6) we see
Iy Bu — &*|lw= S € [|Au |y S € lllewsv. O

3. Applications

In view of the properties of th& -functional many useful estimates, convergences, and convergence rates directly
follow from the estimates established in the last section. First, the equivalence (3) shows that the magnitude of the
energyE (¢) := €2(Au€, Au€)y + (Bu€, Bu)y is totally determined by th& -functional of f. Namely, E (¢) ~
€2K?(e, f,[H*, H*]). This relationship seems new and it immediately yields many sharp estimates on the energy
given in [1,2,4]. We also see the well-known results lfké&) = o(e ~2) and E (¢) is bounded ifff € H*, or the shell
problem is membrane/shear dominated, see [11] for example.

From the equivalence (4) we see that

|u€ = u®| =+ € lusllg = K (e, £, [H*, H*]). (8)

It follows that u€ converges to the limit© in H. An equivalent result can be found in [5]. The equivalence (8)
suggests that without additional assumptionfotihe topology ofH is the strongest in which¢ converges. However,

the topology ofH could be very weak, see [8,9], and [11]. Where [H*, H*]s.», for somed e (0, 1] we have the
convergence ratgu¢ — u0||ﬁ < €Y. This convergence rate is solely determined by the ‘classification-index [4]' of an
intermediate shell. For example for the Scordelis—Lo roof [6] we Hawe— u°| = < €*®. By interpolation of (8)
and (9) below, convergence of in stronger norms can be obtainedfifis more ‘regular’.

From the equivalence (7) we see that whea H*

elulm + |u —u®| 7+ e Hu —u®| 7z~ K (e, u® [H, H]) ~ K (¢, &, [V, W]). 9)
Thus we have the convergence {iny ||u€ — u°||,7 =0, as proved for membrane shells [7]. In this case, we have

the faster convergendg:€ — u0||ﬁ = 0(¢), which seems a new result. Furthermores i iy&* € [V, Wy« (i.€.,

u® € [H, Hlp.») for somed e (0, 1] (for clamped elliptic shellg = 1/6 [7]) we have the rate estimate|u€ |z +
[lu€ — u°||,7 +eLuc - u0||ﬁ < €Y. The above results can be used to obtain sharp estimates on many elliptic-elliptic
singular perturbation problems, see [10] and [12].
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